Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

What happens when you try and fit the triomino pieces into these two grids?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?

Can you find all the different ways of lining up these Cuisenaire rods?

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

What is the best way to shunt these carriages so that each train can continue its journey?

This problem focuses on Dienes' Logiblocs. What is the same and what is different about these pairs of shapes? Can you describe the shapes in the picture?

An activity making various patterns with 2 x 1 rectangular tiles.

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

Here are some rods that are different colours. How could I make a dark green rod using yellow and white rods?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

How many different rhythms can you make by putting two drums on the wheel?

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

If you hang two weights on one side of this balance, in how many different ways can you hang three weights on the other side for it to be balanced?

These practical challenges are all about making a 'tray' and covering it with paper.

How many triangles can you make using sticks that are 3cm, 4cm and 5cm long?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

How many trains can you make which are the same length as Matt's, using rods that are identical?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

How many different triangles can you make on a circular pegboard that has nine pegs?

Find your way through the grid starting at 2 and following these operations. What number do you end on?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

How many different triangles can you draw on the dotty grid which each have one dot in the middle?

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

How many models can you find which obey these rules?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?