This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Solve this Sudoku puzzle whose clues are in the form of sums of the numbers which should appear in diagonal opposite cells.

Find out about Magic Squares in this article written for students. Why are they magic?!

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

In this article, the NRICH team describe the process of selecting solutions for publication on the site.

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

Use the information to describe these marbles. What colours must be on marbles that sparkle when rolling but are dark inside?

Find out what a "fault-free" rectangle is and try to make some of your own.

Try this matching game which will help you recognise different ways of saying the same time interval.

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

I was in my car when I noticed a line of four cars on the lane next to me with number plates starting and ending with J, K, L and M. What order were they in?

Use two dice to generate two numbers with one decimal place. What happens when you round these numbers to the nearest whole number?

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

In this calculation, the box represents a missing digit. What could the digit be? What would the solution be in each case?

This challenge is about finding the difference between numbers which have the same tens digit.

My briefcase has a three-number combination lock, but I have forgotten the combination. I remember that there's a 3, a 5 and an 8. How many possible combinations are there to try?

Can you find the chosen number from the grid using the clues?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

What happens when you round these three-digit numbers to the nearest 100?

What happens when you round these numbers to the nearest whole number?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Here are some rods that are different colours. How could I make a dark green rod using yellow and white rods?

In this maze of hexagons, you start in the centre at 0. The next hexagon must be a multiple of 2 and the next a multiple of 5. What are the possible paths you could take?

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Move from the START to the FINISH by moving across or down to the next square. Can you find a route to make these totals?

How many triangles can you make using sticks that are 3cm, 4cm and 5cm long?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

Using the cards 2, 4, 6, 8, +, - and =, what number statements can you make?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Can you find all the ways to get 15 at the top of this triangle of numbers? Many opportunities to work in different ways.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

This task follows on from Build it Up and takes the ideas into three dimensions!

In how many ways could Mrs Beeswax put ten coins into her three puddings so that each pudding ended up with at least two coins?