Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

What happens when you try and fit the triomino pieces into these two grids?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

What is the best way to shunt these carriages so that each train can continue its journey?

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?

Can you find all the different ways of lining up these Cuisenaire rods?

How many trains can you make which are the same length as Matt's, using rods that are identical?

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Here are some rods that are different colours. How could I make a dark green rod using yellow and white rods?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Hover your mouse over the counters to see which ones will be removed. Click to remove them. The winner is the last one to remove a counter. How you can make sure you win?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

This problem focuses on Dienes' Logiblocs. What is the same and what is different about these pairs of shapes? Can you describe the shapes in the picture?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

Find your way through the grid starting at 2 and following these operations. What number do you end on?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

If you hang two weights on one side of this balance, in how many different ways can you hang three weights on the other side for it to be balanced?

How many different rhythms can you make by putting two drums on the wheel?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

How will you go about finding all the jigsaw pieces that have one peg and one hole?

These practical challenges are all about making a 'tray' and covering it with paper.

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

Alice and Brian are snails who live on a wall and can only travel along the cracks. Alice wants to go to see Brian. How far is the shortest route along the cracks? Is there more than one way to go?

Tim's class collected data about all their pets. Can you put the animal names under each column in the block graph using the information?

These activities focus on finding all possible solutions so if you work in a systematic way, you won't leave any out.

How many different ways can you find to join three equilateral triangles together? Can you convince us that you have found them all?

These activities lend themselves to systematic working in the sense that it helps to have an ordered approach.

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

These activities lend themselves to systematic working in the sense that it helps to have an ordered approach.

Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

These activities focus on finding all possible solutions so working in a systematic way will ensure none are left out.

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.