How many trapeziums, of various sizes, are hidden in this picture?

In the multiplication calculation, some of the digits have been replaced by letters and others by asterisks. Can you reconstruct the original multiplication?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

Can you replace the letters with numbers? Is there only one solution in each case?

Can you find the chosen number from the grid using the clues?

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

How could you put these three beads into bags? How many different ways can you do it? How could you record what you've done?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

These activities focus on finding all possible solutions so working in a systematic way will ensure none are left out.

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

Using all ten cards from 0 to 9, rearrange them to make five prime numbers. Can you find any other ways of doing it?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Can you help the children find the two triangles which have the lengths of two sides numerically equal to their areas?

In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

This challenge is to design different step arrangements, which must go along a distance of 6 on the steps and must end up at 6 high.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

Sally and Ben were drawing shapes in chalk on the school playground. Can you work out what shapes each of them drew using the clues?

Can you rearrange the biscuits on the plates so that the three biscuits on each plate are all different and there is no plate with two biscuits the same as two biscuits on another plate?

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

In this matching game, you have to decide how long different events take.

When intergalactic Wag Worms are born they look just like a cube. Each year they grow another cube in any direction. Find all the shapes that five-year-old Wag Worms can be.

Find all the different shapes that can be made by joining five equilateral triangles edge to edge.

On a digital 24 hour clock, at certain times, all the digits are consecutive. How many times like this are there between midnight and 7 a.m.?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

The pages of my calendar have got mixed up. Can you sort them out?

George and Jim want to buy a chocolate bar. George needs 2p more and Jim need 50p more to buy it. How much is the chocolate bar?

There are seven pots of plants in a greenhouse. They have lost their labels. Perhaps you can help re-label them.

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

These activities focus on finding all possible solutions so if you work in a systematic way, you won't leave any out.

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

Can you substitute numbers for the letters in these sums?

Are all the possible combinations of two shapes included in this set of 27 cards? How do you know?

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

How many rectangles can you find in this shape? Which ones are differently sized and which are 'similar'?

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

What is the date in February 2002 where the 8 digits are palindromic if the date is written in the British way?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

On my calculator I divided one whole number by another whole number and got the answer 3.125. If the numbers are both under 50, what are they?

Using the statements, can you work out how many of each type of rabbit there are in these pens?