Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?

What happens when you try and fit the triomino pieces into these two grids?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

This problem focuses on Dienes' Logiblocs. What is the same and what is different about these pairs of shapes? Can you describe the shapes in the picture?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

What is the best way to shunt these carriages so that each train can continue its journey?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Find your way through the grid starting at 2 and following these operations. What number do you end on?

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

How will you go about finding all the jigsaw pieces that have one peg and one hole?

These practical challenges are all about making a 'tray' and covering it with paper.

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

Can you find all the different ways of lining up these Cuisenaire rods?

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.

Hover your mouse over the counters to see which ones will be removed. Click to remove them. The winner is the last one to remove a counter. How you can make sure you win?

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

Here are some rods that are different colours. How could I make a dark green rod using yellow and white rods?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

In this maze of hexagons, you start in the centre at 0. The next hexagon must be a multiple of 2 and the next a multiple of 5. What are the possible paths you could take?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

If you hang two weights on one side of this balance, in how many different ways can you hang three weights on the other side for it to be balanced?

How many different rhythms can you make by putting two drums on the wheel?

How many different ways can you find to join three equilateral triangles together? Can you convince us that you have found them all?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

These activities lend themselves to systematic working in the sense that it helps to have an ordered approach.

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

In this town, houses are built with one room for each person. There are some families of seven people living in the town. In how many different ways can they build their houses?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Can you find the chosen number from the grid using the clues?

My briefcase has a three-number combination lock, but I have forgotten the combination. I remember that there's a 3, a 5 and an 8. How many possible combinations are there to try?

Chandra, Jane, Terry and Harry ordered their lunches from the sandwich shop. Use the information below to find out who ordered each sandwich.