Find out about Magic Squares in this article written for students. Why are they magic?!

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Use the information to describe these marbles. What colours must be on marbles that sparkle when rolling but are dark inside?

Start with three pairs of socks. Now mix them up so that no mismatched pair is the same as another mismatched pair. Is there more than one way to do it?

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

El Crico the cricket has to cross a square patio to get home. He can jump the length of one tile, two tiles and three tiles. Can you find a path that would get El Crico home in three jumps?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

My briefcase has a three-number combination lock, but I have forgotten the combination. I remember that there's a 3, a 5 and an 8. How many possible combinations are there to try?

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Chandra, Jane, Terry and Harry ordered their lunches from the sandwich shop. Use the information below to find out who ordered each sandwich.

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Can you find out in which order the children are standing in this line?

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

Six friends sat around a circular table. Can you work out from the information who sat where and what their profession were?

What is the smallest number of jumps needed before the white rabbits and the grey rabbits can continue along their path?

The Zargoes use almost the same alphabet as English. What does this birthday message say?

Imagine that the puzzle pieces of a jigsaw are roughly a rectangular shape and all the same size. How many different puzzle pieces could there be?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

Sitting around a table are three girls and three boys. Use the clues to work out were each person is sitting.

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

These activities focus on finding all possible solutions so working in a systematic way will ensure none are left out.

Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

These activities focus on finding all possible solutions so if you work in a systematic way, you won't leave any out.

Try this matching game which will help you recognise different ways of saying the same time interval.

This task follows on from Build it Up and takes the ideas into three dimensions!

Can you find all the ways to get 15 at the top of this triangle of numbers?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

What happens when you add three numbers together? Will your answer be odd or even? How do you know?

These activities lend themselves to systematic working in the sense that it helps to have an ordered approach.

Find out what a "fault-free" rectangle is and try to make some of your own.

An investigation that gives you the opportunity to make and justify predictions.

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.