Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?
Use the numbers and symbols to make this number sentence correct. How many different ways can you find?
Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?
This challenge focuses on finding the sum and difference of pairs of two-digit numbers.
Move from the START to the FINISH by moving across or down to the next square. Can you find a route to make these totals?
A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?
Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.
Use these head, body and leg pieces to make Robot Monsters which are different heights.
You have 5 darts and your target score is 44. How many different ways could you score 44?
Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?
Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?
How could you put these three beads into bags? How many different ways can you do it? How could you record what you've done?
Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?
Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?
Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?
There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.
How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?
This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!
Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?
Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.
This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!
Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.
Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?
There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?
What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?
There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.
Using the statements, can you work out how many of each type of rabbit there are in these pens?
This task, written for the National Young Mathematicians' Award 2016, focuses on 'open squares'. What would the next five open squares look like?
Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.
These eleven shapes each stand for a different number. Can you use the multiplication sums to work out what they are?
Suppose there is a train with 24 carriages which are going to be put together to make up some new trains. Can you find all the ways that this can be done?
Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?
You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?
Three children are going to buy some plants for their birthdays. They will plant them within circular paths. How could they do this?
There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?
Place this "worm" on the 100 square and find the total of the four squares it covers. Keeping its head in the same place, what other totals can you make?
What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.
This task, written for the National Young Mathematicians' Award 2016, invites you to explore the different combinations of scores that you might get on these dart boards.
There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?
This task follows on from Build it Up and takes the ideas into three dimensions!
Number problems at primary level that require careful consideration.
Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?
El Crico the cricket has to cross a square patio to get home. He can jump the length of one tile, two tiles and three tiles. Can you find a path that would get El Crico home in three jumps?
If we had 16 light bars which digital numbers could we make? How will you know you've found them all?
The discs for this game are kept in a flat square box with a square hole for each. Use the information to find out how many discs of each colour there are in the box.
When you throw two regular, six-faced dice you have more chance of getting one particular result than any other. What result would that be? Why is this?
These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.
This task depends on groups working collaboratively, discussing and reasoning to agree a final product.
Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?
These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.