If you put three beads onto a tens/ones abacus you could make the numbers 3, 30, 12 or 21. What numbers can be made with six beads?

In this problem it is not the squares that jump, you do the jumping! The idea is to go round the track in as few jumps as possible.

In how many ways could Mrs Beeswax put ten coins into her three puddings so that each pudding ended up with at least two coins?

Try this matching game which will help you recognise different ways of saying the same time interval.

Use these head, body and leg pieces to make Robot Monsters which are different heights.

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Can you see who the gold medal winner is? What about the silver medal winner and the bronze medal winner?

Here are some rods that are different colours. How could I make a dark green rod using yellow and white rods?

How many trains can you make which are the same length as Matt's, using rods that are identical?

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

What could the half time scores have been in these Olympic hockey matches?

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

How many different triangles can you make on a circular pegboard that has nine pegs?

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

This challenge extends the Plants investigation so now four or more children are involved.

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Solve this Sudoku puzzle whose clues are in the form of sums of the numbers which should appear in diagonal opposite cells.

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Find out what a "fault-free" rectangle is and try to make some of your own.

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

How many different triangles can you draw on the dotty grid which each have one dot in the middle?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

Find all the numbers that can be made by adding the dots on two dice.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Using the cards 2, 4, 6, 8, +, - and =, what number statements can you make?

Can you find all the different ways of lining up these Cuisenaire rods?

Can you make a train the same length as Laura's but using three differently coloured rods? Is there only one way of doing it?

Try out the lottery that is played in a far-away land. What is the chance of winning?

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Two children made up a game as they walked along the garden paths. Can you find out their scores? Can you find some paths of your own?

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.