These eleven shapes each stand for a different number. Can you use the multiplication sums to work out what they are?

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

This task, written for the National Young Mathematicians' Award 2016, invites you to explore the different combinations of scores that you might get on these dart boards.

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

You have 5 darts and your target score is 44. How many different ways could you score 44?

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

This task, written for the National Young Mathematicians' Award 2016, focuses on 'open squares'. What would the next five open squares look like?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

This task follows on from Build it Up and takes the ideas into three dimensions!

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Suppose there is a train with 24 carriages which are going to be put together to make up some new trains. Can you find all the ways that this can be done?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Can you replace the letters with numbers? Is there only one solution in each case?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

Stuart's watch loses two minutes every hour. Adam's watch gains one minute every hour. Use the information to work out what time (the real time) they arrived at the airport.

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Investigate the different ways you could split up these rooms so that you have double the number.

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

Your challenge is to find the longest way through the network following this rule. You can start and finish anywhere, and with any shape, as long as you follow the correct order.

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

Can you substitute numbers for the letters in these sums?