Using the cards 2, 4, 6, 8, +, - and =, what number statements can you make?

These activities lend themselves to systematic working in the sense that it helps to have an ordered approach.

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

This challenge is about finding the difference between numbers which have the same tens digit.

If you put three beads onto a tens/ones abacus you could make the numbers 3, 30, 12 or 21. What numbers can be made with six beads?

The brown frog and green frog want to swap places without getting wet. They can hop onto a lily pad next to them, or hop over each other. How could they do it?

These activities focus on finding all possible solutions so if you work in a systematic way, you won't leave any out.

These activities focus on finding all possible solutions so working in a systematic way will ensure none are left out.

The Red Express Train usually has five red carriages. How many ways can you find to add two blue carriages?

Two children made up a game as they walked along the garden paths. Can you find out their scores? Can you find some paths of your own?

Start with three pairs of socks. Now mix them up so that no mismatched pair is the same as another mismatched pair. Is there more than one way to do it?

My coat has three buttons. How many ways can you find to do up all the buttons?

In Sam and Jill's garden there are two sorts of ladybirds with 7 spots or 4 spots. What numbers of total spots can you make?

El Crico the cricket has to cross a square patio to get home. He can jump the length of one tile, two tiles and three tiles. Can you find a path that would get El Crico home in three jumps?

Chandra, Jane, Terry and Harry ordered their lunches from the sandwich shop. Use the information below to find out who ordered each sandwich.

My briefcase has a three-number combination lock, but I have forgotten the combination. I remember that there's a 3, a 5 and an 8. How many possible combinations are there to try?

Lorenzie was packing his bag for a school trip. He packed four shirts and three pairs of pants. "I will be able to have a different outfit each day", he said. How many days will Lorenzie be away?

Can you find out in which order the children are standing in this line?

Six friends sat around a circular table. Can you work out from the information who sat where and what their profession were?

Sitting around a table are three girls and three boys. Use the clues to work out were each person is sitting.

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

Find all the numbers that can be made by adding the dots on two dice.

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

The Zargoes use almost the same alphabet as English. What does this birthday message say?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Can you create jigsaw pieces which are based on a square shape, with at least one peg and one hole?

Use the information to describe these marbles. What colours must be on marbles that sparkle when rolling but are dark inside?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

What is the smallest number of jumps needed before the white rabbits and the grey rabbits can continue along their path?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

Moira is late for school. What is the shortest route she can take from the school gates to the entrance?

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

What happens when you try and fit the triomino pieces into these two grids?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.