Use these head, body and leg pieces to make Robot Monsters which are different heights.

Number problems at primary level that require careful consideration.

Can you make a train the same length as Laura's but using three differently coloured rods? Is there only one way of doing it?

In your bank, you have three types of coins. The number of spots shows how much they are worth. Can you choose coins to exchange with the groups given to make the same total?

Place this "worm" on the 100 square and find the total of the four squares it covers. Keeping its head in the same place, what other totals can you make?

Move from the START to the FINISH by moving across or down to the next square. Can you find a route to make these totals?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Find your way through the grid starting at 2 and following these operations. What number do you end on?

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

Your challenge is to find the longest way through the network following this rule. You can start and finish anywhere, and with any shape, as long as you follow the correct order.

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

This task, written for the National Young Mathematicians' Award 2016, focuses on 'open squares'. What would the next five open squares look like?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

In this matching game, you have to decide how long different events take.

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

This task, written for the National Young Mathematicians' Award 2016, invites you to explore the different combinations of scores that you might get on these dart boards.

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

In this game for two players, you throw two dice and find the product. How many shapes can you draw on the grid which have that area or perimeter?

In how many ways could Mrs Beeswax put ten coins into her three puddings so that each pudding ended up with at least two coins?

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

These two group activities use mathematical reasoning - one is numerical, one geometric.

If you had any number of ordinary dice, what are the possible ways of making their totals 6? What would the product of the dice be each time?

Write the numbers up to 64 in an interesting way so that the shape they make at the end is interesting, different, more exciting ... than just a square.

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

This task follows on from Build it Up and takes the ideas into three dimensions!

Suppose there is a train with 24 carriages which are going to be put together to make up some new trains. Can you find all the ways that this can be done?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

There are to be 6 homes built on a new development site. They could be semi-detached, detached or terraced houses. How many different combinations of these can you find?