This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

Find your way through the grid starting at 2 and following these operations. What number do you end on?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

There are to be 6 homes built on a new development site. They could be semi-detached, detached or terraced houses. How many different combinations of these can you find?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

When I fold a 0-20 number line, I end up with 'stacks' of numbers on top of each other. These challenges involve varying the length of the number line and investigating the 'stack totals'.

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

These activities lend themselves to systematic working in the sense that it helps to have an ordered approach.

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

In how many ways could Mrs Beeswax put ten coins into her three puddings so that each pudding ended up with at least two coins?

These activities lend themselves to systematic working in the sense that it helps to have an ordered approach.

These activities focus on finding all possible solutions so working in a systematic way will ensure none are left out.

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Using the statements, can you work out how many of each type of rabbit there are in these pens?

These activities focus on finding all possible solutions so working in a systematic way will ensure none are left out.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

These activities focus on finding all possible solutions so if you work in a systematic way, you won't leave any out.

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

Sitting around a table are three girls and three boys. Use the clues to work out were each person is sitting.

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

What is the best way to shunt these carriages so that each train can continue its journey?

The Zargoes use almost the same alphabet as English. What does this birthday message say?

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

What happens when you try and fit the triomino pieces into these two grids?

El Crico the cricket has to cross a square patio to get home. He can jump the length of one tile, two tiles and three tiles. Can you find a path that would get El Crico home in three jumps?

Move from the START to the FINISH by moving across or down to the next square. Can you find a route to make these totals?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

This task, written for the National Young Mathematicians' Award 2016, invites you to explore the different combinations of scores that you might get on these dart boards.

This task, written for the National Young Mathematicians' Award 2016, focuses on 'open squares'. What would the next five open squares look like?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?