Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Can you use the information to find out which cards I have used?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Using the cards 2, 4, 6, 8, +, - and =, what number statements can you make?

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

This dice train has been made using specific rules. How many different trains can you make?

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

Find your way through the grid starting at 2 and following these operations. What number do you end on?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

Move from the START to the FINISH by moving across or down to the next square. Can you find a route to make these totals?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

Ram divided 15 pennies among four small bags. He could then pay any sum of money from 1p to 15p without opening any bag. How many pennies did Ram put in each bag?

When you throw two regular, six-faced dice you have more chance of getting one particular result than any other. What result would that be? Why is this?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

In how many ways could Mrs Beeswax put ten coins into her three puddings so that each pudding ended up with at least two coins?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

What happens when you try and fit the triomino pieces into these two grids?

This task, written for the National Young Mathematicians' Award 2016, focuses on 'open squares'. What would the next five open squares look like?

How could you arrange at least two dice in a stack so that the total of the visible spots is 18?

Try this matching game which will help you recognise different ways of saying the same time interval.

Using all ten cards from 0 to 9, rearrange them to make five prime numbers. Can you find any other ways of doing it?

Try out the lottery that is played in a far-away land. What is the chance of winning?

This task depends on groups working collaboratively, discussing and reasoning to agree a final product.

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

In this game for two players, you throw two dice and find the product. How many shapes can you draw on the grid which have that area or perimeter?

In this matching game, you have to decide how long different events take.

This task follows on from Build it Up and takes the ideas into three dimensions!

Can you find all the ways to get 15 at the top of this triangle of numbers?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.