This article for teachers suggests activities based on pegboards, from pattern generation to finding all possible triangles, for example.

This article for primary teachers suggests ways in which to help children become better at working systematically.

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

This practical challenge invites you to investigate the different squares you can make on a square geoboard or pegboard.

How many different triangles can you make on a circular pegboard that has nine pegs?

Can you find all the different triangles on these peg boards, and find their angles?

How many ways can you find of tiling the square patio, using square tiles of different sizes?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Are all the possible combinations of two shapes included in this set of 27 cards? How do you know?

How many triangles can you make using sticks that are 3cm, 4cm and 5cm long?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

This activity investigates how you might make squares and pentominoes from Polydron.

What is the smallest number of tiles needed to tile this patio? Can you investigate patios of different sizes?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

How many different triangles can you draw on the dotty grid which each have one dot in the middle?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Move from the START to the FINISH by moving across or down to the next square. Can you find a route to make these totals?

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

Alice's mum needs to go to each child's house just once and then back home again. How many different routes are there? Use the information to find out how long each road is on the route she took.

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

Number problems at primary level that require careful consideration.

Can you find all the different ways of lining up these Cuisenaire rods?

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

Find out what a "fault-free" rectangle is and try to make some of your own.

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

Can you make a train the same length as Laura's but using three differently coloured rods? Is there only one way of doing it?

How many trains can you make which are the same length as Matt's, using rods that are identical?

In this maze of hexagons, you start in the centre at 0. The next hexagon must be a multiple of 2 and the next a multiple of 5. What are the possible paths you could take?

Here are some rods that are different colours. How could I make a dark green rod using yellow and white rods?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

This task, written for the National Young Mathematicians' Award 2016, focuses on 'open squares'. What would the next five open squares look like?

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.

This task, written for the National Young Mathematicians' Award 2016, invites you to explore the different combinations of scores that you might get on these dart boards.

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

Tim's class collected data about all their pets. Can you put the animal names under each column in the block graph using the information?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

Chandra, Jane, Terry and Harry ordered their lunches from the sandwich shop. Use the information below to find out who ordered each sandwich.

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

My briefcase has a three-number combination lock, but I have forgotten the combination. I remember that there's a 3, a 5 and an 8. How many possible combinations are there to try?