In 15 years' time my age will be the square of my age 15 years ago. Can you work out my age, and when I had other special birthdays?

Can you find the values at the vertices when you know the values on the edges?

There are lots of different methods to find out what the shapes are worth - how many can you find?

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

Can you find the values at the vertices when you know the values on the edges of these multiplication arithmagons?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Have a go at creating these images based on circles. What do you notice about the areas of the different sections?

If you move the tiles around, can you make squares with different coloured edges?

How well can you estimate 10 seconds? Investigate with our timing tool.

How many winning lines can you make in a three-dimensional version of noughts and crosses?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

What is the greatest volume you can get for a rectangular (cuboid) parcel if the maximum combined length and girth are 2 metres?

There are nasty versions of this dice game but we'll start with the nice ones...

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

Explore the relationships between different paper sizes.

Can you recreate squares and rhombuses if you are only given a side or a diagonal?

Start with two numbers and generate a sequence where the next number is the mean of the last two numbers...

Here is a machine with four coloured lights. Can you make two lights switch on at once? Three lights? All four lights?

You'll need to know your number properties to win a game of Statement Snap...

Six balls of various colours are randomly shaken into a trianglular arrangement. What is the probability of having at least one red in the corner?

7 balls are shaken in a container. You win if the two blue balls touch. What is the probability of winning?

Can you make a right-angled triangle on this peg-board by joining up three points round the edge?

Is there a relationship between the coordinates of the endpoints of a line and the number of grid squares it crosses?

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Think of a number and follow my instructions. Tell me your answer, and I'll tell you what you started with! Can you explain how I know?

Which set of numbers that add to 10 have the largest product?

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

Where should you start, if you want to finish back where you started?

Imagine you were given the chance to win some money... and imagine you had nothing to lose...

Which countries have the most naturally athletic populations?

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

An equilateral triangle rotates around regular polygons and produces an outline like a flower. What are the perimeters of the different flowers?

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

An aluminium can contains 330 ml of cola. If the can's diameter is 6 cm what is the can's height?

Think of two whole numbers under 10, and follow the steps. I can work out both your numbers very quickly. How?

Can you find any two-digit numbers that satisfy all of these statements?

Here is a machine with four coloured lights. Can you develop a strategy to work out the rules controlling each light?

Can you work out which spinners were used to generate the frequency charts?

What size square corners should be cut from a square piece of paper to make a box with the largest possible volume?

Alison and Charlie are playing a game. Charlie wants to go first so Alison lets him. Was that such a good idea?

Play around with sets of five numbers and see what you can discover about different types of average...

Can you find a way to identify times tables after they have been shifted up?

Interior angles can help us to work out which polygons will tessellate. Can we use similar ideas to predict which polygons combine to create semi-regular solids?

A hexagon, with sides alternately a and b units in length, is inscribed in a circle. How big is the radius of the circle?

Semi-regular tessellations combine two or more different regular polygons to fill the plane. Can you find all the semi-regular tessellations?

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

Who said that adding, subtracting, multiplying and dividing couldn't be fun?

The diagonals of a trapezium divide it into four parts. Can you create a trapezium where three of those parts are equal in area?

A tilted square is a square with no horizontal sides. Can you devise a general instruction for the construction of a square when you are given just one of its sides?