Move your counters through this snake of cards and see how far you can go. Are you surprised by where you end up?

A game in which players take it in turns to try to draw quadrilaterals (or triangles) with particular properties. Is it possible to fill the game grid?

A game in which players take it in turns to turn up two cards. If they can draw a triangle which satisfies both properties they win the pair of cards. And a few challenging questions to follow...

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Can you find ways to put numbers in the overlaps so the rings have equal totals?

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

By selecting digits for an addition grid, what targets can you make?

In this game the winner is the first to complete a row of three. Are some squares easier to land on than others?

Imagine you have an unlimited number of four types of triangle. How many different tetrahedra can you make?

Semi-regular tessellations combine two or more different regular polygons to fill the plane. Can you find all the semi-regular tessellations?

Interior angles can help us to work out which polygons will tessellate. Can we use similar ideas to predict which polygons combine to create semi-regular solids?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

A game in which players take it in turns to choose a number. Can you block your opponent?

Using your knowledge of the properties of numbers, can you fill all the squares on the board?

Some 4 digit numbers can be written as the product of a 3 digit number and a 2 digit number using the digits 1 to 9 each once and only once. The number 4396 can be written as just such a product. Can. . . .

A country has decided to have just two different coins, 3z and 5z coins. Which totals can be made? Is there a largest total that cannot be made? How do you know?

The Tower of Hanoi is an ancient mathematical challenge. Working on the building blocks may help you to explain the patterns you notice.

In how many ways can you fit all three pieces together to make shapes with line symmetry?

These Olympic quantities have been jumbled up! Can you put them back together again?

How many moves does it take to swap over some red and blue frogs? Do you have a method?

Can you work out which processes are represented by the graphs?

Can you use small coloured cubes to make a 3 by 3 by 3 cube so that each face of the bigger cube contains one of each colour?

Charlie has made a Magic V. Can you use his example to make some more? And how about Magic Ls, Ns and Ws?

My measurements have got all jumbled up! Swap them around and see if you can find a combination where every measurement is valid.