Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .

This article outlines the underlying axioms of spherical geometry giving a simple proof that the sum of the angles of a triangle on the surface of a unit sphere is equal to pi plus the area of the. . . .

On the 3D grid a strange (and deadly) animal is lurking. Using the tracking system can you locate this creature as quickly as possible?

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

How can visual patterns be used to prove sums of series?

This is an interactive net of a Rubik's cube. Twists of the 3D cube become mixes of the squares on the 2D net. Have a play and see how many scrambles you can undo!

Takes you through the systematic way in which you can begin to solve a mixed up Cubic Net. How close will you come to a solution?

The net of a cube is to be cut from a sheet of card 100 cm square. What is the maximum volume cube that can be made from a single piece of card?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

P is a point on the circumference of a circle radius r which rolls, without slipping, inside a circle of radius 2r. What is the locus of P?

Imagine a rectangular tray lying flat on a table. Suppose that a plate lies on the tray and rolls around, in contact with the sides as it rolls. What can we say about the motion?

To avoid losing think of another very well known game where the patterns of play are similar.

This is a simple version of an ancient game played all over the world. It is also called Mancala. What tactics will increase your chances of winning?

There are 27 small cubes in a 3 x 3 x 3 cube, 54 faces being visible at any one time. Is it possible to reorganise these cubes so that by dipping the large cube into a pot of paint three times you. . . .

Use the animation to help you work out how many lines are needed to draw mystic roses of different sizes.

A bicycle passes along a path and leaves some tracks. Is it possible to say which track was made by the front wheel and which by the back wheel?

In this problem we see how many pieces we can cut a cube of cheese into using a limited number of slices. How many pieces will you be able to make?

A game for 2 people. Take turns joining two dots, until your opponent is unable to move.

I found these clocks in the Arts Centre at the University of Warwick intriguing - do they really need four clocks and what times would be ambiguous with only two or three of them?

A box of size a cm by b cm by c cm is to be wrapped with a square piece of wrapping paper. Without cutting the paper what is the smallest square this can be?

Discover a way to sum square numbers by building cuboids from small cubes. Can you picture how the sequence will grow?

A ribbon runs around a box so that it makes a complete loop with two parallel pieces of ribbon on the top. How long will the ribbon be?

Jo made a cube from some smaller cubes, painted some of the faces of the large cube, and then took it apart again. 45 small cubes had no paint on them at all. How many small cubes did Jo use?

A spider is sitting in the middle of one of the smallest walls in a room and a fly is resting beside the window. What is the shortest distance the spider would have to crawl to catch the fly?

Can you use small coloured cubes to make a 3 by 3 by 3 cube so that each face of the bigger cube contains one of each colour?

Use the diagram to investigate the classical Pythagorean means.

This task depends on groups working collaboratively, discussing and reasoning to agree a final product.

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

Which of the following cubes can be made from these nets?

What can you see? What do you notice? What questions can you ask?

What 3D shapes occur in nature. How efficiently can you pack these shapes together?

Two boats travel up and down a lake. Can you picture where they will cross if you know how fast each boat is travelling?

Can you find a rule which relates triangular numbers to square numbers?

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

Can you find a rule which connects consecutive triangular numbers?

A square of area 3 square units cannot be drawn on a 2D grid so that each of its vertices have integer coordinates, but can it be drawn on a 3D grid? Investigate squares that can be drawn.

Show that all pentagonal numbers are one third of a triangular number.

An irregular tetrahedron has two opposite sides the same length a and the line joining their midpoints is perpendicular to these two edges and is of length b. What is the volume of the tetrahedron?

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

Build gnomons that are related to the Fibonacci sequence and try to explain why this is possible.

What's the largest volume of box you can make from a square of paper?

The triangle OMN has vertices on the axes with whole number co-ordinates. How many points with whole number coordinates are there on the hypotenuse MN?

A cube is made from smaller cubes, 5 by 5 by 5, then some of those cubes are removed. Can you make the specified shapes, and what is the most and least number of cubes required ?

Imagine a stack of numbered cards with one on top. Discard the top, put the next card to the bottom and repeat continuously. Can you predict the last card?

Can you make a tetrahedron whose faces all have the same perimeter?

Your data is a set of positive numbers. What is the maximum value that the standard deviation can take?

How many winning lines can you make in a three-dimensional version of noughts and crosses?