Generate three random numbers to determine the side lengths of a triangle. What triangles can you draw?

Imagine you have an unlimited number of four types of triangle. How many different tetrahedra can you make?

We start with one yellow cube and build around it to make a 3x3x3 cube with red cubes. Then we build around that red cube with blue cubes and so on. How many cubes of each colour have we used?

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

How many moves does it take to swap over some red and blue frogs? Do you have a method?

Can you make sense of the charts and diagrams that are created and used by sports competitors, trainers and statisticians?

Can you make sense of the charts and diagrams that are created and used by sports competitors, trainers and statisticians?

Semi-regular tessellations combine two or more different regular polygons to fill the plane. Can you find all the semi-regular tessellations?

Can you recreate these designs? What are the basic units? What movement is required between each unit? Some elegant use of procedures will help - variables not essential.

These are pictures of the sea defences at New Brighton. Can you work out what a basic shape might be in both images of the sea wall and work out a way they might fit together?

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

This task depends on groups working collaboratively, discussing and reasoning to agree a final product.

Two boats travel up and down a lake. Can you picture where they will cross if you know how fast each boat is travelling?

Use the animation to help you work out how many lines are needed to draw mystic roses of different sizes.

Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?

In how many ways can you fit all three pieces together to make shapes with line symmetry?

Can you use small coloured cubes to make a 3 by 3 by 3 cube so that each face of the bigger cube contains one of each colour?

A cyclist and a runner start off simultaneously around a race track each going at a constant speed. The cyclist goes all the way around and then catches up with the runner. He then instantly turns. . . .

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

How many different symmetrical shapes can you make by shading triangles or squares?

I found these clocks in the Arts Centre at the University of Warwick intriguing - do they really need four clocks and what times would be ambiguous with only two or three of them?

Start with a large square, join the midpoints of its sides, you'll see four right angled triangles. Remove these triangles, a second square is left. Repeat the operation. What happens?

The reader is invited to investigate changes (or permutations) in the ringing of church bells, illustrated by braid diagrams showing the order in which the bells are rung.

What is the shape of wrapping paper that you would need to completely wrap this model?

Imagine you are suspending a cube from one vertex (corner) and allowing it to hang freely. Now imagine you are lowering it into water until it is exactly half submerged. What shape does the surface. . . .

The whole set of tiles is used to make a square. This has a green and blue border. There are no green or blue tiles anywhere in the square except on this border. How many tiles are there in the set?

Show that among the interior angles of a convex polygon there cannot be more than three acute angles.

Which of the following cubes can be made from these nets?

When dice land edge-up, we usually roll again. But what if we didn't...?

The triangle OMN has vertices on the axes with whole number co-ordinates. How many points with whole number coordinates are there on the hypotenuse MN?

ABCD is a regular tetrahedron and the points P, Q, R and S are the midpoints of the edges AB, BD, CD and CA. Prove that PQRS is a square.

The triangle ABC is equilateral. The arc AB has centre C, the arc BC has centre A and the arc CA has centre B. Explain how and why this shape can roll along between two parallel tracks.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Charlie and Alison have been drawing patterns on coordinate grids. Can you picture where the patterns lead?

Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.

An irregular tetrahedron has two opposite sides the same length a and the line joining their midpoints is perpendicular to these two edges and is of length b. What is the volume of the tetrahedron?

There are 27 small cubes in a 3 x 3 x 3 cube, 54 faces being visible at any one time. Is it possible to reorganise these cubes so that by dipping the large cube into a pot of paint three times you. . . .

Lyndon Baker describes how the Mobius strip and Euler's law can introduce pupils to the idea of topology.

A square of area 3 square units cannot be drawn on a 2D grid so that each of its vertices have integer coordinates, but can it be drawn on a 3D grid? Investigate squares that can be drawn.

Can you mark 4 points on a flat surface so that there are only two different distances between them?

Bilbo goes on an adventure, before arriving back home. Using the information given about his journey, can you work out where Bilbo lives?

See if you can anticipate successive 'generations' of the two animals shown here.

A game for 2 people. Take turns joining two dots, until your opponent is unable to move.

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

This is a simple version of an ancient game played all over the world. It is also called Mancala. What tactics will increase your chances of winning?