How can visual patterns be used to prove sums of series?

Discover a way to sum square numbers by building cuboids from small cubes. Can you picture how the sequence will grow?

Use the animation to help you work out how many lines are needed to draw mystic roses of different sizes.

Build gnomons that are related to the Fibonacci sequence and try to explain why this is possible.

To avoid losing think of another very well known game where the patterns of play are similar.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

Find the point whose sum of distances from the vertices (corners) of a given triangle is a minimum.

Four rods are hinged at their ends to form a convex quadrilateral. Investigate the different shapes that the quadrilateral can take. Be patient this problem may be slow to load.

Can you make a tetrahedron whose faces all have the same perimeter?

Glarsynost lives on a planet whose shape is that of a perfect regular dodecahedron. Can you describe the shortest journey she can make to ensure that she will see every part of the planet?

What can you see? What do you notice? What questions can you ask?

P is a point on the circumference of a circle radius r which rolls, without slipping, inside a circle of radius 2r. What is the locus of P?

Two boats travel up and down a lake. Can you picture where they will cross if you know how fast each boat is travelling?

I found these clocks in the Arts Centre at the University of Warwick intriguing - do they really need four clocks and what times would be ambiguous with only two or three of them?

A game for 2 people. Take turns joining two dots, until your opponent is unable to move.

Can you recreate these designs? What are the basic units? What movement is required between each unit? Some elegant use of procedures will help - variables not essential.

The triangle OMN has vertices on the axes with whole number co-ordinates. How many points with whole number coordinates are there on the hypotenuse MN?

A bicycle passes along a path and leaves some tracks. Is it possible to say which track was made by the front wheel and which by the back wheel?

Can you find a rule which connects consecutive triangular numbers?

On the 3D grid a strange (and deadly) animal is lurking. Using the tracking system can you locate this creature as quickly as possible?

A square of area 3 square units cannot be drawn on a 2D grid so that each of its vertices have integer coordinates, but can it be drawn on a 3D grid? Investigate squares that can be drawn.

This is an interactive net of a Rubik's cube. Twists of the 3D cube become mixes of the squares on the 2D net. Have a play and see how many scrambles you can undo!

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .

An irregular tetrahedron has two opposite sides the same length a and the line joining their midpoints is perpendicular to these two edges and is of length b. What is the volume of the tetrahedron?

There are 27 small cubes in a 3 x 3 x 3 cube, 54 faces being visible at any one time. Is it possible to reorganise these cubes so that by dipping the large cube into a pot of paint three times you. . . .

This is a simple version of an ancient game played all over the world. It is also called Mancala. What tactics will increase your chances of winning?

A cube is made from smaller cubes, 5 by 5 by 5, then some of those cubes are removed. Can you make the specified shapes, and what is the most and least number of cubes required ?

In this problem we are faced with an apparently easy area problem, but it has gone horribly wrong! What happened?

Imagine a stack of numbered cards with one on top. Discard the top, put the next card to the bottom and repeat continuously. Can you predict the last card?

Place the numbers 1, 2, 3,..., 9 one on each square of a 3 by 3 grid so that all the rows and columns add up to a prime number. How many different solutions can you find?

A and C are the opposite vertices of a square ABCD, and have coordinates (a,b) and (c,d), respectively. What are the coordinates of the vertices B and D? What is the area of the square?

This article outlines the underlying axioms of spherical geometry giving a simple proof that the sum of the angles of a triangle on the surface of a unit sphere is equal to pi plus the area of the. . . .

A circular plate rolls in contact with the sides of a rectangular tray. How much of its circumference comes into contact with the sides of the tray when it rolls around one circuit?

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

This article is based on some of the ideas that emerged during the production of a book which takes visualising as its focus. We began to identify problems which helped us to take a structured view. . . .

The coke machine in college takes 50 pence pieces. It also takes a certain foreign coin of traditional design...

This task depends on groups working collaboratively, discussing and reasoning to agree a final product.

A visualisation problem in which you search for vectors which sum to zero from a jumble of arrows. Will your eyes be quicker than algebra?

A bus route has a total duration of 40 minutes. Every 10 minutes, two buses set out, one from each end. How many buses will one bus meet on its way from one end to the other end?

Can you find a way of representing these arrangements of balls?

Mathematics is the study of patterns. Studying pattern is an opportunity to observe, hypothesise, experiment, discover and create.

Find the ratio of the outer shaded area to the inner area for a six pointed star and an eight pointed star.

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

Can you make sense of the charts and diagrams that are created and used by sports competitors, trainers and statisticians?