What 3D shapes occur in nature. How efficiently can you pack these shapes together?

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

Mike and Monisha meet at the race track, which is 400m round. Just to make a point, Mike runs anticlockwise whilst Monisha runs clockwise. Where will they meet on their way around and will they ever. . . .

This article explores ths history of theories about the shape of our planet. It is the first in a series of articles looking at the significance of geometric shapes in the history of astronomy.

The second in a series of articles on visualising and modelling shapes in the history of astronomy.

A bicycle passes along a path and leaves some tracks. Is it possible to say which track was made by the front wheel and which by the back wheel?

Can you visualise whether these nets fold up into 3D shapes? Watch the videos each time to see if you were correct.

Bilbo goes on an adventure, before arriving back home. Using the information given about his journey, can you work out where Bilbo lives?

A visualisation problem in which you search for vectors which sum to zero from a jumble of arrows. Will your eyes be quicker than algebra?

A circular plate rolls in contact with the sides of a rectangular tray. How much of its circumference comes into contact with the sides of the tray when it rolls around one circuit?

This article outlines the underlying axioms of spherical geometry giving a simple proof that the sum of the angles of a triangle on the surface of a unit sphere is equal to pi plus the area of the. . . .

A cube is made from smaller cubes, 5 by 5 by 5, then some of those cubes are removed. Can you make the specified shapes, and what is the most and least number of cubes required ?

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

There are 27 small cubes in a 3 x 3 x 3 cube, 54 faces being visible at any one time. Is it possible to reorganise these cubes so that by dipping the large cube into a pot of paint three times you. . . .

An irregular tetrahedron has two opposite sides the same length a and the line joining their midpoints is perpendicular to these two edges and is of length b. What is the volume of the tetrahedron?

Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .

This is a simple version of an ancient game played all over the world. It is also called Mancala. What tactics will increase your chances of winning?

How can visual patterns be used to prove sums of series?

A 10x10x10 cube is made from 27 2x2 cubes with corridors between them. Find the shortest route from one corner to the opposite corner.

Blue Flibbins are so jealous of their red partners that they will not leave them on their own with any other bue Flibbin. What is the quickest way of getting the five pairs of Flibbins safely to. . . .

The image in this problem is part of a piece of equipment found in the playground of a school. How would you describe it to someone over the phone?

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

The triangle OMN has vertices on the axes with whole number co-ordinates. How many points with whole number coordinates are there on the hypotenuse MN?

The reader is invited to investigate changes (or permutations) in the ringing of church bells, illustrated by braid diagrams showing the order in which the bells are rung.

To avoid losing think of another very well known game where the patterns of play are similar.

Find the point whose sum of distances from the vertices (corners) of a given triangle is a minimum.

A cyclist and a runner start off simultaneously around a race track each going at a constant speed. The cyclist goes all the way around and then catches up with the runner. He then instantly turns. . . .

A bus route has a total duration of 40 minutes. Every 10 minutes, two buses set out, one from each end. How many buses will one bus meet on its way from one end to the other end?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

What's the largest volume of box you can make from a square of paper?

Can you make sense of the charts and diagrams that are created and used by sports competitors, trainers and statisticians?

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

Can you make sense of the charts and diagrams that are created and used by sports competitors, trainers and statisticians?

This task depends on groups working collaboratively, discussing and reasoning to agree a final product.

Use the animation to help you work out how many lines are needed to draw mystic roses of different sizes.

Two boats travel up and down a lake. Can you picture where they will cross if you know how fast each boat is travelling?

Discover a way to sum square numbers by building cuboids from small cubes. Can you picture how the sequence will grow?

What can you see? What do you notice? What questions can you ask?

I found these clocks in the Arts Centre at the University of Warwick intriguing - do they really need four clocks and what times would be ambiguous with only two or three of them?

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

This is the first article in a series which aim to provide some insight into the way spatial thinking develops in children, and draw on a range of reported research. The focus of this article is the. . . .

Can you recreate these designs? What are the basic units? What movement is required between each unit? Some elegant use of procedures will help - variables not essential.

A game for 2 people. Take turns joining two dots, until your opponent is unable to move.

Build gnomons that are related to the Fibonacci sequence and try to explain why this is possible.

Can you find a rule which connects consecutive triangular numbers?