ABCD is a regular tetrahedron and the points P, Q, R and S are the midpoints of the edges AB, BD, CD and CA. Prove that PQRS is a square.
We are given a regular icosahedron having three red vertices. Show that it has a vertex that has at least two red neighbours.
Some diagrammatic 'proofs' of algebraic identities and inequalities.
Can you visualise whether these nets fold up into 3D shapes? Watch the videos each time to see if you were correct.
Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .
What is the shape of wrapping paper that you would need to completely wrap this model?
Can you see how this picture illustrates the formula for the sum of the first six cube numbers?
The picture illustrates the sum 1 + 2 + 3 + 4 = (4 x 5)/2. Prove the general formula for the sum of the first n natural numbers and the formula for the sum of the cubes of the first n natural. . . .
A blue coin rolls round two yellow coins which touch. The coins are the same size. How many revolutions does the blue coin make when it rolls all the way round the yellow coins? Investigate for a. . . .
Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?
Three frogs hopped onto the table. A red frog on the left a green in the middle and a blue frog on the right. Then frogs started jumping randomly over any adjacent frog. Is it possible for them to. . . .
A square of area 3 square units cannot be drawn on a 2D grid so that each of its vertices have integer coordinates, but can it be drawn on a 3D grid? Investigate squares that can be drawn.
These are pictures of the sea defences at New Brighton. Can you work out what a basic shape might be in both images of the sea wall and work out a way they might fit together?
Lyndon Baker describes how the Mobius strip and Euler's law can introduce pupils to the idea of topology.
This is an interactive net of a Rubik's cube. Twists of the 3D cube become mixes of the squares on the 2D net. Have a play and see how many scrambles you can undo!
Imagine you are suspending a cube from one vertex (corner) and allowing it to hang freely. Now imagine you are lowering it into water until it is exactly half submerged. What shape does the surface. . . .
Start with a large square, join the midpoints of its sides, you'll see four right angled triangles. Remove these triangles, a second square is left. Repeat the operation. What happens?
Here is a solitaire type environment for you to experiment with. Which targets can you reach?
In this problem we are faced with an apparently easy area problem, but it has gone horribly wrong! What happened?
If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?
Show that among the interior angles of a convex polygon there cannot be more than three acute angles.
Find the point whose sum of distances from the vertices (corners) of a given triangle is a minimum.
To avoid losing think of another very well known game where the patterns of play are similar.
Can you find a rule which relates triangular numbers to square numbers?
A bus route has a total duration of 40 minutes. Every 10 minutes, two buses set out, one from each end. How many buses will one bus meet on its way from one end to the other end?
The triangle OMN has vertices on the axes with whole number co-ordinates. How many points with whole number coordinates are there on the hypotenuse MN?
A Hamiltonian circuit is a continuous path in a graph that passes through each of the vertices exactly once and returns to the start. How many Hamiltonian circuits can you find in these graphs?
Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.
If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.
A cyclist and a runner start off simultaneously around a race track each going at a constant speed. The cyclist goes all the way around and then catches up with the runner. He then instantly turns. . . .
A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.
Two motorboats travelling up and down a lake at constant speeds leave opposite ends A and B at the same instant, passing each other, for the first time 600 metres from A, and on their return, 400. . . .
Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?
Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?
Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?
An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?
A spider is sitting in the middle of one of the smallest walls in a room and a fly is resting beside the window. What is the shortest distance the spider would have to crawl to catch the fly?
The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.
A half-cube is cut into two pieces by a plane through the long diagonal and at right angles to it. Can you draw a net of these pieces? Are they identical?
Glarsynost lives on a planet whose shape is that of a perfect regular dodecahedron. Can you describe the shortest journey she can make to ensure that she will see every part of the planet?
Mathematics is the study of patterns. Studying pattern is an opportunity to observe, hypothesise, experiment, discover and create.
Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.
Which of the following cubes can be made from these nets?
This is a simple version of an ancient game played all over the world. It is also called Mancala. What tactics will increase your chances of winning?
If you move the tiles around, can you make squares with different coloured edges?