Semi-regular tessellations combine two or more different regular polygons to fill the plane. Can you find all the semi-regular tessellations?

A tilted square is a square with no horizontal sides. Can you devise a general instruction for the construction of a square when you are given just one of its sides?

How many moves does it take to swap over some red and blue frogs? Do you have a method?

Starting with four different triangles, imagine you have an unlimited number of each type. How many different tetrahedra can you make? Convince us you have found them all.

How many different symmetrical shapes can you make by shading triangles or squares?

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

Here are four tiles. They can be arranged in a 2 by 2 square so that this large square has a green edge. If the tiles are moved around, we can make a 2 by 2 square with a blue edge... Now try to. . . .

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

Can you find a rule which connects consecutive triangular numbers?

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

Can you explain why it is impossible to construct this triangle?

In a three-dimensional version of noughts and crosses, how many winning lines can you make?

Show that all pentagonal numbers are one third of a triangular number.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.

At the time of writing the hour and minute hands of my clock are at right angles. How long will it be before they are at right angles again?

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

To avoid losing think of another very well known game where the patterns of play are similar.

How many different ways can I lay 10 paving slabs, each 2 foot by 1 foot, to make a path 2 foot wide and 10 foot long from my back door into my garden, without cutting any of the paving slabs?

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.

How can you make an angle of 60 degrees by folding a sheet of paper twice?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Jo made a cube from some smaller cubes, painted some of the faces of the large cube, and then took it apart again. 45 small cubes had no paint on them at all. How many small cubes did Jo use?

A and B are two interlocking cogwheels having p teeth and q teeth respectively. One tooth on B is painted red. Find the values of p and q for which the red tooth on B contacts every gap on the. . . .

In how many ways can you fit all three pieces together to make shapes with line symmetry?

You can move the 4 pieces of the jigsaw and fit them into both outlines. Explain what has happened to the missing one unit of area.

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

Generate three random numbers to determine the side lengths of a triangle. What triangles can you draw?

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

What size square corners should be cut from a square piece of paper to make a box with the largest possible volume?

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

Show that among the interior angles of a convex polygon there cannot be more than three acute angles.

On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

On a clock the three hands - the second, minute and hour hands - are on the same axis. How often in a 24 hour day will the second hand be parallel to either of the two other hands?

A circle rolls around the outside edge of a square so that its circumference always touches the edge of the square. Can you describe the locus of the centre of the circle?

You have 27 small cubes, 3 each of nine colours. Use the small cubes to make a 3 by 3 by 3 cube so that each face of the bigger cube contains one of every colour.

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

A spider is sitting in the middle of one of the smallest walls in a room and a fly is resting beside the window. What is the shortest distance the spider would have to crawl to catch the fly?

Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?

The triangle ABC is equilateral. The arc AB has centre C, the arc BC has centre A and the arc CA has centre B. Explain how and why this shape can roll along between two parallel tracks.