Search by Topic

Resources tagged with Visualising similar to Shapely Pairs:

Filter by: Content type:
Stage:
Challenge level: Challenge Level:1 Challenge Level:2 Challenge Level:3

There are 186 results

Broad Topics > Using, Applying and Reasoning about Mathematics > Visualising

problem icon

Triangles to Tetrahedra

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Imagine you have an unlimited number of four types of triangle. How many different tetrahedra can you make?

problem icon

Isosceles Triangles

Stage: 3 Challenge Level: Challenge Level:1

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

problem icon

Semi-regular Tessellations

Stage: 3 Challenge Level: Challenge Level:1

Semi-regular tessellations combine two or more different regular polygons to fill the plane. Can you find all the semi-regular tessellations?

problem icon

Reflecting Squarely

Stage: 3 Challenge Level: Challenge Level:1

In how many ways can you fit all three pieces together to make shapes with line symmetry?

problem icon

Marbles in a Box

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

How many winning lines can you make in a three-dimensional version of noughts and crosses?

problem icon

Linkage

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Four rods, two of length a and two of length b, are linked to form a kite. The linkage is moveable so that the angles change. What is the maximum area of the kite?

problem icon

Constructing Triangles

Stage: 3 Challenge Level: Challenge Level:1

Generate three random numbers to determine the side lengths of a triangle. What triangles can you draw?

problem icon

Christmas Chocolates

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

problem icon

Frogs

Stage: 3 Challenge Level: Challenge Level:1

How many moves does it take to swap over some red and blue frogs? Do you have a method?

problem icon

Tetrahedra Tester

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

problem icon

Counting Triangles

Stage: 3 Challenge Level: Challenge Level:1

Triangles are formed by joining the vertices of a skeletal cube. How many different types of triangle are there? How many triangles altogether?

problem icon

Shady Symmetry

Stage: 3 Challenge Level: Challenge Level:1

How many different symmetrical shapes can you make by shading triangles or squares?

problem icon

Squares in Rectangles

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

problem icon

Something in Common

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A square of area 3 square units cannot be drawn on a 2D grid so that each of its vertices have integer coordinates, but can it be drawn on a 3D grid? Investigate squares that can be drawn.

problem icon

Cuboids

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

problem icon

Bands and Bridges: Bringing Topology Back

Stage: 2 and 3

Lyndon Baker describes how the Mobius strip and Euler's law can introduce pupils to the idea of topology.

problem icon

Cubic Net

Stage: 4 and 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

This is an interactive net of a Rubik's cube. Twists of the 3D cube become mixes of the squares on the 2D net. Have a play and see how many scrambles you can undo!

problem icon

Square It

Stage: 3 and 4 Challenge Level: Challenge Level:1

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

problem icon

Bendy Quad

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Four rods are hinged at their ends to form a convex quadrilateral. Investigate the different shapes that the quadrilateral can take. Be patient this problem may be slow to load.

problem icon

Coordinate Patterns

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Charlie and Alison have been drawing patterns on coordinate grids. Can you picture where the patterns lead?

problem icon

Buses

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

A bus route has a total duration of 40 minutes. Every 10 minutes, two buses set out, one from each end. How many buses will one bus meet on its way from one end to the other end?

problem icon

Square Coordinates

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

A tilted square is a square with no horizontal sides. Can you devise a general instruction for the construction of a square when you are given just one of its sides?

problem icon

Like a Circle in a Spiral

Stage: 2, 3 and 4 Challenge Level: Challenge Level:1

A cheap and simple toy with lots of mathematics. Can you interpret the images that are produced? Can you predict the pattern that will be produced using different wheels?

problem icon

Platonic Planet

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Glarsynost lives on a planet whose shape is that of a perfect regular dodecahedron. Can you describe the shortest journey she can make to ensure that she will see every part of the planet?

problem icon

Concrete Wheel

Stage: 3 Challenge Level: Challenge Level:1

A huge wheel is rolling past your window. What do you see?

problem icon

Trice

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

ABCDEFGH is a 3 by 3 by 3 cube. Point P is 1/3 along AB (that is AP : PB = 1 : 2), point Q is 1/3 along GH and point R is 1/3 along ED. What is the area of the triangle PQR?

problem icon

Conway's Chequerboard Army

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

problem icon

All in the Mind

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Imagine you are suspending a cube from one vertex (corner) and allowing it to hang freely. Now imagine you are lowering it into water until it is exactly half submerged. What shape does the surface. . . .

problem icon

Khun Phaen Escapes to Freedom

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.

problem icon

Diagonal Dodge

Stage: 2 and 3 Challenge Level: Challenge Level:1

A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.

problem icon

Floating in Space

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Two angles ABC and PQR are floating in a box so that AB//PQ and BC//QR. Prove that the two angles are equal.

problem icon

Picturing Triangular Numbers

Stage: 3 Challenge Level: Challenge Level:1

Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

problem icon

Nine Colours

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Can you use small coloured cubes to make a 3 by 3 by 3 cube so that each face of the bigger cube contains one of each colour?

problem icon

Charting More Success

Stage: 3 and 4 Challenge Level: Challenge Level:1

Can you make sense of the charts and diagrams that are created and used by sports competitors, trainers and statisticians?

problem icon

Tetra Square

Stage: 3 Challenge Level: Challenge Level:1

ABCD is a regular tetrahedron and the points P, Q, R and S are the midpoints of the edges AB, BD, CD and CA. Prove that PQRS is a square.

problem icon

Jam

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A game for 2 players

problem icon

Wari

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

This is a simple version of an ancient game played all over the world. It is also called Mancala. What tactics will increase your chances of winning?

problem icon

Sea Defences

Stage: 2 and 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

These are pictures of the sea defences at New Brighton. Can you work out what a basic shape might be in both images of the sea wall and work out a way they might fit together?

problem icon

Charting Success

Stage: 3 and 4 Challenge Level: Challenge Level:1

Can you make sense of the charts and diagrams that are created and used by sports competitors, trainers and statisticians?

problem icon

Zooming in on the Squares

Stage: 2 and 3

Start with a large square, join the midpoints of its sides, you'll see four right angled triangles. Remove these triangles, a second square is left. Repeat the operation. What happens?

problem icon

You Owe Me Five Farthings, Say the Bells of St Martin's

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

problem icon

On the Edge

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

If you move the tiles around, can you make squares with different coloured edges?

problem icon

Cubes Within Cubes

Stage: 2 and 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

We start with one yellow cube and build around it to make a 3x3x3 cube with red cubes. Then we build around that red cube with blue cubes and so on. How many cubes of each colour have we used?

problem icon

Spotting the Loophole

Stage: 4 Challenge Level: Challenge Level:1

A visualisation problem in which you search for vectors which sum to zero from a jumble of arrows. Will your eyes be quicker than algebra?

problem icon

Instant Insanity

Stage: 3, 4 and 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

problem icon

Cogs

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

A and B are two interlocking cogwheels having p teeth and q teeth respectively. One tooth on B is painted red. Find the values of p and q for which the red tooth on B contacts every gap on the. . . .

problem icon

Tic Tac Toe

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

In the game of Noughts and Crosses there are 8 distinct winning lines. How many distinct winning lines are there in a game played on a 3 by 3 by 3 board, with 27 cells?

problem icon

Auditorium Steps

Stage: 2 and 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

What is the shape of wrapping paper that you would need to completely wrap this model?

problem icon

Eight Hidden Squares

Stage: 2 and 3 Challenge Level: Challenge Level:2 Challenge Level:2

On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?

problem icon

Clocking Off

Stage: 2, 3 and 4 Challenge Level: Challenge Level:1

I found these clocks in the Arts Centre at the University of Warwick intriguing - do they really need four clocks and what times would be ambiguous with only two or three of them?