Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Imagine a pyramid which is built in square layers of small cubes. If we number the cubes from the top, starting with 1, can you picture which cubes are directly below this first cube?

This article for teachers describes how modelling number properties involving multiplication using an array of objects not only allows children to represent their thinking with concrete materials,. . . .

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Can you fit the tangram pieces into the outline of Little Ming?

Exchange the positions of the two sets of counters in the least possible number of moves

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.

An extension of noughts and crosses in which the grid is enlarged and the length of the winning line can to altered to 3, 4 or 5.

Can you mentally fit the 7 SOMA pieces together to make a cube? Can you do it in more than one way?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

A game for 2 players. Given a board of dots in a grid pattern, players take turns drawing a line by connecting 2 adjacent dots. Your goal is to complete more squares than your opponent.

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

Can you make a 3x3 cube with these shapes made from small cubes?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

A game for 1 or 2 people. Use the interactive version, or play with friends. Try to round up as many counters as possible.

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

What is the best way to shunt these carriages so that each train can continue its journey?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

Design an arrangement of display boards in the school hall which fits the requirements of different people.

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

We start with one yellow cube and build around it to make a 3x3x3 cube with red cubes. Then we build around that red cube with blue cubes and so on. How many cubes of each colour have we used?

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Can you predict when you'll be clapping and when you'll be clicking if you start this rhythm? How about when a friend begins a new rhythm at the same time?

This article for teachers discusses examples of problems in which there is no obvious method but in which children can be encouraged to think deeply about the context and extend their ability to. . . .

Can you fit the tangram pieces into the outlines of the candle and sundial?

Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?

How many different symmetrical shapes can you make by shading triangles or squares?

Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.

Lyndon Baker describes how the Mobius strip and Euler's law can introduce pupils to the idea of topology.

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

A bus route has a total duration of 40 minutes. Every 10 minutes, two buses set out, one from each end. How many buses will one bus meet on its way from one end to the other end?

Charlie and Alison have been drawing patterns on coordinate grids. Can you picture where the patterns lead?