How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Can you fit the tangram pieces into the outline of this sports car?

How many different triangles can you make on a circular pegboard that has nine pegs?

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

Can you fit the tangram pieces into the outline of these convex shapes?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of this junk?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of this plaque design?

Choose a box and work out the smallest rectangle of paper needed to wrap it so that it is completely covered.

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

Here are the six faces of a cube - in no particular order. Here are three views of the cube. Can you deduce where the faces are in relation to each other and record them on the net of this cube?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you fit the tangram pieces into the outline of Mai Ling?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you cut up a square in the way shown and make the pieces into a triangle?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of the telescope and microscope?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Here's a simple way to make a Tangram without any measuring or ruling lines.

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

What is the total area of the four outside triangles which are outlined in red in this arrangement of squares inside each other?

Investigate the number of paths you can take from one vertex to another in these 3D shapes. Is it possible to take an odd number and an even number of paths to the same vertex?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

What shape has Harry drawn on this clock face? Can you find its area? What is the largest number of square tiles that could cover this area?

Can you find ways of joining cubes together so that 28 faces are visible?

Each of the nets of nine solid shapes has been cut into two pieces. Can you see which pieces go together?

Exploring and predicting folding, cutting and punching holes and making spirals.

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of these clocks?

What is the best way to shunt these carriages so that each train can continue its journey?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

Can you fit the tangram pieces into the outlines of the chairs?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

This challenge involves eight three-cube models made from interlocking cubes. Investigate different ways of putting the models together then compare your constructions.