Search by Topic

Resources tagged with Visualising similar to Air Nets:

Filter by: Content type:
Stage:
Challenge level: Challenge Level:1 Challenge Level:2 Challenge Level:3

There are 262 results

Broad Topics > Using, Applying and Reasoning about Mathematics > Visualising

problem icon

Air Nets

Stage: 2, 3, 4 and 5 Challenge Level: Challenge Level:1

Can you visualise whether these nets fold up into 3D shapes? Watch the videos each time to see if you were correct.

problem icon

Seven Squares

Stage: 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

Watch these videos to see how Phoebe, Alice and Luke chose to draw 7 squares. How would they draw 100?

problem icon

Cutting a Cube

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A half-cube is cut into two pieces by a plane through the long diagonal and at right angles to it. Can you draw a net of these pieces? Are they identical?

problem icon

Yih or Luk Tsut K'i or Three Men's Morris

Stage: 3, 4 and 5 Challenge Level: Challenge Level:1

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

problem icon

Problem Solving, Using and Applying and Functional Mathematics

Stage: 1, 2, 3, 4 and 5 Challenge Level: Challenge Level:1

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

problem icon

Rotating Triangle

Stage: 3 and 4 Challenge Level: Challenge Level:1

What happens to the perimeter of triangle ABC as the two smaller circles change size and roll around inside the bigger circle?

problem icon

The Triangle Game

Stage: 3 and 4 Challenge Level: Challenge Level:1

Can you discover whether this is a fair game?

problem icon

Playground Snapshot

Stage: 2 and 3 Challenge Level: Challenge Level:2 Challenge Level:2

The image in this problem is part of a piece of equipment found in the playground of a school. How would you describe it to someone over the phone?

problem icon

Shaping the Universe II - the Solar System

Stage: 3 and 4

The second in a series of articles on visualising and modelling shapes in the history of astronomy.

problem icon

Auditorium Steps

Stage: 2 and 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

What is the shape of wrapping paper that you would need to completely wrap this model?

problem icon

Shaping the Universe I - Planet Earth

Stage: 3 and 4

This article explores ths history of theories about the shape of our planet. It is the first in a series of articles looking at the significance of geometric shapes in the history of astronomy.

problem icon

Flight of the Flibbins

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Blue Flibbins are so jealous of their red partners that they will not leave them on their own with any other bue Flibbin. What is the quickest way of getting the five pairs of Flibbins safely to. . . .

problem icon

All in the Mind

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Imagine you are suspending a cube from one vertex (corner) and allowing it to hang freely. Now imagine you are lowering it into water until it is exactly half submerged. What shape does the surface. . . .

problem icon

Drilling Many Cubes

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

A useful visualising exercise which offers opportunities for discussion and generalising, and which could be used for thinking about the formulae needed for generating the results on a spreadsheet.

problem icon

Christmas Boxes

Stage: 3 Challenge Level: Challenge Level:1

Find all the ways to cut out a 'net' of six squares that can be folded into a cube.

problem icon

Cubist Cuts

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A 3x3x3 cube may be reduced to unit cubes in six saw cuts. If after every cut you can rearrange the pieces before cutting straight through, can you do it in fewer?

problem icon

Take Ten

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Is it possible to remove ten unit cubes from a 3 by 3 by 3 cube made from 27 unit cubes so that the surface area of the remaining solid is the same as the surface area of the original 3 by 3 by 3. . . .

problem icon

Ding Dong Bell

Stage: 3, 4 and 5

The reader is invited to investigate changes (or permutations) in the ringing of church bells, illustrated by braid diagrams showing the order in which the bells are rung.

problem icon

Buses

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

A bus route has a total duration of 40 minutes. Every 10 minutes, two buses set out, one from each end. How many buses will one bus meet on its way from one end to the other end?

problem icon

Clocking Off

Stage: 2, 3 and 4 Challenge Level: Challenge Level:1

I found these clocks in the Arts Centre at the University of Warwick intriguing - do they really need four clocks and what times would be ambiguous with only two or three of them?

problem icon

The Development of Spatial and Geometric Thinking: 5 to 18

Stage: 1, 2, 3 and 4

This is the first article in a series which aim to provide some insight into the way spatial thinking develops in children, and draw on a range of reported research. The focus of this article is the. . . .

problem icon

Triangles in the Middle

Stage: 3, 4 and 5 Challenge Level: Challenge Level:1

This task depends on groups working collaboratively, discussing and reasoning to agree a final product.

problem icon

Take One Example

Stage: 1 and 2

This article introduces the idea of generic proof for younger children and illustrates how one example can offer a proof of a general result through unpacking its underlying structure.

problem icon

Route to Infinity

Stage: 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

Can you describe this route to infinity? Where will the arrows take you next?

problem icon

There and Back Again

Stage: 3 Challenge Level: Challenge Level:1

Bilbo goes on an adventure, before arriving back home. Using the information given about his journey, can you work out where Bilbo lives?

problem icon

Sprouts

Stage: 2, 3, 4 and 5 Challenge Level: Challenge Level:2 Challenge Level:2

A game for 2 people. Take turns joining two dots, until your opponent is unable to move.

problem icon

Sliding Puzzle

Stage: 1, 2, 3 and 4 Challenge Level: Challenge Level:1

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

problem icon

Seven Squares - Group-worthy Task

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

problem icon

Soma - So Good

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Can you mentally fit the 7 SOMA pieces together to make a cube? Can you do it in more than one way?

problem icon

Cubes Within Cubes Revisited

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

problem icon

Konigsberg Plus

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

problem icon

Königsberg

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Can you cross each of the seven bridges that join the north and south of the river to the two islands, once and once only, without retracing your steps?

problem icon

Tic Tac Toe

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

In the game of Noughts and Crosses there are 8 distinct winning lines. How many distinct winning lines are there in a game played on a 3 by 3 by 3 board, with 27 cells?

problem icon

On Time

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

On a clock the three hands - the second, minute and hour hands - are on the same axis. How often in a 24 hour day will the second hand be parallel to either of the two other hands?

problem icon

Crossing the Atlantic

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Every day at noon a boat leaves Le Havre for New York while another boat leaves New York for Le Havre. The ocean crossing takes seven days. How many boats will each boat cross during their journey?

problem icon

Tetrahedra Tester

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

problem icon

Convex Polygons

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Show that among the interior angles of a convex polygon there cannot be more than three acute angles.

problem icon

Diagonal Dodge

Stage: 2 and 3 Challenge Level: Challenge Level:1

A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.

problem icon

Cubes Within Cubes

Stage: 2 and 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

We start with one yellow cube and build around it to make a 3x3x3 cube with red cubes. Then we build around that red cube with blue cubes and so on. How many cubes of each colour have we used?

problem icon

Frogs

Stage: 2 and 3 Challenge Level: Challenge Level:1

How many moves does it take to swap over some red and blue frogs? Do you have a method?

problem icon

Painted Cube

Stage: 3 Challenge Level: Challenge Level:1

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

problem icon

Painting Cubes

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Imagine you have six different colours of paint. You paint a cube using a different colour for each of the six faces. How many different cubes can be painted using the same set of six colours?

problem icon

Icosian Game

Stage: 3 Challenge Level: Challenge Level:1

This problem is about investigating whether it is possible to start at one vertex of a platonic solid and visit every other vertex once only returning to the vertex you started at.

problem icon

Dissect

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

It is possible to dissect any square into smaller squares. What is the minimum number of squares a 13 by 13 square can be dissected into?

problem icon

Face Painting

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

You want to make each of the 5 Platonic solids and colour the faces so that, in every case, no two faces which meet along an edge have the same colour.

problem icon

Pattern Power

Stage: 1, 2 and 3

Mathematics is the study of patterns. Studying pattern is an opportunity to observe, hypothesise, experiment, discover and create.

problem icon

Masterclass Ideas: Visualising

Stage: 2 and 3 Challenge Level: Challenge Level:1

A package contains a set of resources designed to develop pupils' mathematical thinking. This package places a particular emphasis on “visualising” and is designed to meet the needs. . . .

problem icon

Travelling Salesman

Stage: 3 Challenge Level: Challenge Level:1

A Hamiltonian circuit is a continuous path in a graph that passes through each of the vertices exactly once and returns to the start. How many Hamiltonian circuits can you find in these graphs?

problem icon

Intersecting Circles

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Three circles have a maximum of six intersections with each other. What is the maximum number of intersections that a hundred circles could have?

problem icon

Sea Defences

Stage: 2 and 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

These are pictures of the sea defences at New Brighton. Can you work out what a basic shape might be in both images of the sea wall and work out a way they might fit together?