Imagine a pyramid which is built in square layers of small cubes. If we number the cubes from the top, starting with 1, can you picture which cubes are directly below this first cube?

Think of a number, square it and subtract your starting number. Is the number youâ€™re left with odd or even? How do the images help to explain this?

This article for teachers describes a project which explores thepower of storytelling to convey concepts and ideas to children.

An activity centred around observations of dots and how we visualise number arrangement patterns.

What is the greatest number of squares you can make by overlapping three squares?

Here are more buildings to picture in your mind's eye. Watch out - they become quite complicated!

An extension of noughts and crosses in which the grid is enlarged and the length of the winning line can to altered to 3, 4 or 5.

How can you paint the faces of these eight cubes so they can be put together to make a 2 x 2 cube that is green all over AND a 2 x 2 cube that is yellow all over?

Can you cut up a square in the way shown and make the pieces into a triangle?

A game has a special dice with a colour spot on each face. These three pictures show different views of the same dice. What colour is opposite blue?

Can you fit the tangram pieces into the outline of Mai Ling?

Reasoning about the number of matches needed to build squares that share their sides.

A game for 1 person. Can you work out how the dice must be rolled from the start position to the finish? Play on line.

Can you fit the tangram pieces into the outlines of these people?

For this task, you'll need an A4 sheet and two A5 transparent sheets. Decide on a way of arranging the A5 sheets on top of the A4 sheet and explore ...

Can you visualise what shape this piece of paper will make when it is folded?

Which of these dice are right-handed and which are left-handed?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

A game for 1 or 2 people. Use the interactive version, or play with friends. Try to round up as many counters as possible.

Here are the six faces of a cube - in no particular order. Here are three views of the cube. Can you deduce where the faces are in relation to each other and record them on the net of this cube?

Choose a box and work out the smallest rectangle of paper needed to wrap it so that it is completely covered.

Can you work out what kind of rotation produced this pattern of pegs in our pegboard?

Can you arrange the shapes in a chain so that each one shares a face (or faces) that are the same shape as the one that follows it?

Can you cut a regular hexagon into two pieces to make a parallelogram? Try cutting it into three pieces to make a rhombus!

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

On which of these shapes can you trace a path along all of its edges, without going over any edge twice?

Can you fit the tangram pieces into the outline of the child walking home from school?

Exploring and predicting folding, cutting and punching holes and making spirals.

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you work out what is wrong with the cogs on a UK 2 pound coin?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

This challenge involves eight three-cube models made from interlocking cubes. Investigate different ways of putting the models together then compare your constructions.

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

Find a way to cut a 4 by 4 square into only two pieces, then rejoin the two pieces to make an L shape 6 units high.

This practical problem challenges you to make quadrilaterals with a loop of string. You'll need some friends to help!

I've made some cubes and some cubes with holes in. This challenge invites you to explore the difference in the number of small cubes I've used. Can you see any patterns?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

Exchange the positions of the two sets of counters in the least possible number of moves

What shape has Harry drawn on this clock face? Can you find its area? What is the largest number of square tiles that could cover this area?

Make a cube out of straws and have a go at this practical challenge.

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.