How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

This article looks at levels of geometric thinking and the types of activities required to develop this thinking.

Can you fit the tangram pieces into the outline of the candle?

Can you fit the tangram pieces into the outline of the butterfly?

Can you fit the tangram pieces into the outline of this teacup?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

Make a flower design using the same shape made out of different sizes of paper.

Can you work out what shape is made by folding in this way? Why not create some patterns using this shape but in different sizes?

Can you fit the tangram pieces into the outlines of the convex shapes?

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

Can you fit the tangram pieces into the outline of the sports car?

Imagine a 3 by 3 by 3 cube made of 9 small cubes. Each face of the large cube is painted a different colour. How many small cubes will have two painted faces? Where are they?

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

Can you fit the tangram pieces into the outline of Mah Ling?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outlines of the people?

Can you cut up a square in the way shown and make the pieces into a triangle?

A game has a special dice with a colour spot on each face. These three pictures show different views of the same dice. What colour is opposite blue?

What is the greatest number of squares you can make by overlapping three squares?

Can you fit the tangram pieces into the outline of the telephone?

Can you fit the tangram pieces into the outlines of the telescope and microscope?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of the plaque design?

Can you fit the tangram pieces into the silhouette of the junk?

Can you fit the tangram pieces into the outlines of Mah Ling and Chi Wing?

Can you fit the tangram pieces into the outline of the playing piece?

Can you fit the tangram pieces into the outline of the clock?

Can you fit the tangram pieces into the outline of Granma T?

Can you fit the tangram pieces into the outlines of the rabbits?

Can you fit the tangram pieces into the outline of the dragon?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outlines of Wai Ping, Wu Ming and Chi Wing?

Read about the adventures of Granma T and her grandchildren in this series of stories, accompanied by interactive tangrams.

Can you fit the tangram pieces into the outlines of the camel and giraffe?

Can you logically construct these silhouettes using the tangram pieces?

Why do you think that the red player chose that particular dot in this game of Seeing Squares?

Can you fit the tangram pieces into the outlines of the numbers?

Can you fit the tangram pieces into the outlines of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outline of Little Ming?

Find a way to cut a 4 by 4 square into only two pieces, then rejoin the two pieces to make an L shape 6 units high.

Can you fit the tangram pieces into the outline of the house?

Have a look at what happens when you pull a reef knot and a granny knot tight. Which do you think is best for securing things together? Why?

Can you fit the tangram pieces into the outline of the brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of the child walking home from school?

Imagine a 4 by 4 by 4 cube. If you and a friend drill holes in some of the small cubes in the ways described, how many will not have holes drilled through them?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

For this task, you'll need an A4 sheet and two A5 transparent sheets. Decide on a way of arranging the A5 sheets on top of the A4 sheet and explore ...

Draw three straight lines to separate these shapes into four groups - each group must contain one of each shape.

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?