Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

What is the best way to shunt these carriages so that each train can continue its journey?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

How will you go about finding all the jigsaw pieces that have one peg and one hole?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Hover your mouse over the counters to see which ones will be removed. Click to remove them. The winner is the last one to remove a counter. How you can make sure you win?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

How many different triangles can you make on a circular pegboard that has nine pegs?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

When I fold a 0-20 number line, I end up with 'stacks' of numbers on top of each other. These challenges involve varying the length of the number line and investigating the 'stack totals'.

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

This challenge involves eight three-cube models made from interlocking cubes. Investigate different ways of putting the models together then compare your constructions.

One face of a regular tetrahedron is painted blue and each of the remaining faces are painted using one of the colours red, green or yellow. How many different possibilities are there?

How can you arrange these 10 matches in four piles so that when you move one match from three of the piles into the fourth, you end up with the same arrangement?

Can you find ways of joining cubes together so that 28 faces are visible?

Investigate the number of paths you can take from one vertex to another in these 3D shapes. Is it possible to take an odd number and an even number of paths to the same vertex?

Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?

Think of a number, square it and subtract your starting number. Is the number youâ€™re left with odd or even? How do the images help to explain this?

Which of these dice are right-handed and which are left-handed?

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?

You have been given three shapes made out of sponge: a sphere, a cylinder and a cone. Your challenge is to find out how to cut them to make different shapes for printing.

What shape has Harry drawn on this clock face? Can you find its area? What is the largest number of square tiles that could cover this area?

This article for teachers discusses examples of problems in which there is no obvious method but in which children can be encouraged to think deeply about the context and extend their ability to. . . .

Can you cut up a square in the way shown and make the pieces into a triangle?

Exploring and predicting folding, cutting and punching holes and making spirals.

Reasoning about the number of matches needed to build squares that share their sides.

Make a cube out of straws and have a go at this practical challenge.

This article for teachers describes how modelling number properties involving multiplication using an array of objects not only allows children to represent their thinking with concrete materials,. . . .

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

Can you visualise what shape this piece of paper will make when it is folded?

What shape is made when you fold using this crease pattern? Can you make a ring design?

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.