Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

How many different triangles can you make on a circular pegboard that has nine pegs?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

What is the best way to shunt these carriages so that each train can continue its journey?

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Can you find ways of joining cubes together so that 28 faces are visible?

In a right angled triangular field, three animals are tethered to posts at the midpoint of each side. Each rope is just long enough to allow the animal to reach two adjacent vertices. Only one animal. . . .

Can you fit the tangram pieces into the outlines of the chairs?

Can you cut up a square in the way shown and make the pieces into a triangle?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

ABCDEFGH is a 3 by 3 by 3 cube. Point P is 1/3 along AB (that is AP : PB = 1 : 2), point Q is 1/3 along GH and point R is 1/3 along ED. What is the area of the triangle PQR?

An extension of noughts and crosses in which the grid is enlarged and the length of the winning line can to altered to 3, 4 or 5.

Can you fit the tangram pieces into the outline of Mai Ling?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

Can you fit the tangram pieces into the outlines of these people?

Exchange the positions of the two sets of counters in the least possible number of moves

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of Granma T?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

We start with one yellow cube and build around it to make a 3x3x3 cube with red cubes. Then we build around that red cube with blue cubes and so on. How many cubes of each colour have we used?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of this telephone?

Seven small rectangular pictures have one inch wide frames. The frames are removed and the pictures are fitted together like a jigsaw to make a rectangle of length 12 inches. Find the dimensions of. . . .