How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Can you cut up a square in the way shown and make the pieces into a triangle?

What are the next three numbers in this sequence? Can you explain why are they called pyramid numbers?

One face of a regular tetrahedron is painted blue and each of the remaining faces are painted using one of the colours red, green or yellow. How many different possibilities are there?

This challenge involves eight three-cube models made from interlocking cubes. Investigate different ways of putting the models together then compare your constructions.

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

Make a cube out of straws and have a go at this practical challenge.

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

Can you visualise what shape this piece of paper will make when it is folded?

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

How will you go about finding all the jigsaw pieces that have one peg and one hole?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

Have a look at what happens when you pull a reef knot and a granny knot tight. Which do you think is best for securing things together? Why?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

What is the best way to shunt these carriages so that each train can continue its journey?

Here's a simple way to make a Tangram without any measuring or ruling lines.

Can you work out what shape is made by folding in this way? Why not create some patterns using this shape but in different sizes?

Choose a box and work out the smallest rectangle of paper needed to wrap it so that it is completely covered.

Here are more buildings to picture in your mind's eye. Watch out - they become quite complicated!

Can you work out what kind of rotation produced this pattern of pegs in our pegboard?

What is the relationship between these first two shapes? Which shape relates to the third one in the same way? Can you explain why?

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of the telescope and microscope?

How can you paint the faces of these eight cubes so they can be put together to make a 2 x 2 cube that is green all over AND a 2 x 2 cube that is yellow all over?

Can you fit the tangram pieces into the outline of Mai Ling?

A game has a special dice with a colour spot on each face. These three pictures show different views of the same dice. What colour is opposite blue?

I've made some cubes and some cubes with holes in. This challenge invites you to explore the difference in the number of small cubes I've used. Can you see any patterns?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you use the interactive to complete the tangrams in the shape of butterflies?

An activity centred around observations of dots and how we visualise number arrangement patterns.

Can you fit the tangram pieces into the outline of the rocket?

On which of these shapes can you trace a path along all of its edges, without going over any edge twice?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of Granma T?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the silhouette of the junk?

This article looks at levels of geometric thinking and the types of activities required to develop this thinking.

These points all mark the vertices (corners) of ten hidden squares. Can you find the 10 hidden squares?

Can you fit the tangram pieces into the outline of these convex shapes?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?