Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

Imagine a pyramid which is built in square layers of small cubes. If we number the cubes from the top, starting with 1, can you picture which cubes are directly below this first cube?

Exchange the positions of the two sets of counters in the least possible number of moves

An extension of noughts and crosses in which the grid is enlarged and the length of the winning line can to altered to 3, 4 or 5.

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

A game for 2 players. Given a board of dots in a grid pattern, players take turns drawing a line by connecting 2 adjacent dots. Your goal is to complete more squares than your opponent.

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

What is the best way to shunt these carriages so that each train can continue its journey?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

A game for 1 or 2 people. Use the interactive version, or play with friends. Try to round up as many counters as possible.

Can you fit the tangram pieces into the outline of the rocket?

Can you fit the tangram pieces into the outline of this junk?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

Can you make a 3x3 cube with these shapes made from small cubes?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Think of a number, square it and subtract your starting number. Is the number youâ€™re left with odd or even? How do the images help to explain this?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

Can you fit the tangram pieces into the outline of these convex shapes?

Can you fit the tangram pieces into the outlines of these clocks?

Which of these dice are right-handed and which are left-handed?

What is the greatest number of squares you can make by overlapping three squares?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Can you work out what is wrong with the cogs on a UK 2 pound coin?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of Mai Ling?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of these rabbits?

A game for 1 person. Can you work out how the dice must be rolled from the start position to the finish? Play on line.

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outline of Little Ming?

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

An activity centred around observations of dots and how we visualise number arrangement patterns.