Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of Little Fung at the table?

A game for 1 or 2 people. Use the interactive version, or play with friends. Try to round up as many counters as possible.

Find a way to cut a 4 by 4 square into only two pieces, then rejoin the two pieces to make an L shape 6 units high.

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of these rabbits?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outline of Granma T?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Exploring and predicting folding, cutting and punching holes and making spirals.

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you work out what kind of rotation produced this pattern of pegs in our pegboard?

Exchange the positions of the two sets of counters in the least possible number of moves

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?

Can you cut up a square in the way shown and make the pieces into a triangle?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

For this task, you'll need an A4 sheet and two A5 transparent sheets. Decide on a way of arranging the A5 sheets on top of the A4 sheet and explore ...

Can you visualise what shape this piece of paper will make when it is folded?

Can you fit the tangram pieces into the outline of Little Ming?

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

A game has a special dice with a colour spot on each face. These three pictures show different views of the same dice. What colour is opposite blue?

How can you paint the faces of these eight cubes so they can be put together to make a 2 x 2 cube that is green all over AND a 2 x 2 cube that is yellow all over?

A game for 1 person. Can you work out how the dice must be rolled from the start position to the finish? Play on line.

Can you work out what is wrong with the cogs on a UK 2 pound coin?

Can you fit the tangram pieces into the outline of the rocket?

Can you fit the tangram pieces into the outline of Mai Ling?

Here are more buildings to picture in your mind's eye. Watch out - they become quite complicated!

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

What is the greatest number of squares you can make by overlapping three squares?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Imagine a 4 by 4 by 4 cube. If you and a friend drill holes in some of the small cubes in the ways described, how many will not have holes drilled through them?

What are the next three numbers in this sequence? Can you explain why are they called pyramid numbers?

Can you use the interactive to complete the tangrams in the shape of butterflies?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Seeing Squares game for an adult and child. Can you come up with a way of always winning this game?

Watch this animation. What do you see? Can you explain why this happens?

Why do you think that the red player chose that particular dot in this game of Seeing Squares?

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

An extension of noughts and crosses in which the grid is enlarged and the length of the winning line can to altered to 3, 4 or 5.