What is the total area of the four outside triangles which are outlined in red in this arrangement of squares inside each other?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

Draw three straight lines to separate these shapes into four groups - each group must contain one of each shape.

Seven small rectangular pictures have one inch wide frames. The frames are removed and the pictures are fitted together like a jigsaw to make a rectangle of length 12 inches. Find the dimensions of. . . .

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

What shape has Harry drawn on this clock face? Can you find its area? What is the largest number of square tiles that could cover this area?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Can you work out what shape is made by folding in this way? Why not create some patterns using this shape but in different sizes?

Can you visualise what shape this piece of paper will make when it is folded?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

Billy's class had a robot called Fred who could draw with chalk held underneath him. What shapes did the pupils make Fred draw?

How many different triangles can you make on a circular pegboard that has nine pegs?

Can you explain why it is impossible to construct this triangle?

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

Imagine you are suspending a cube from one vertex and allowing it to hang freely. What shape does the surface of the water make around the cube?

Seeing Squares game for an adult and child. Can you come up with a way of always winning this game?

Can you cut up a square in the way shown and make the pieces into a triangle?

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

Choose a box and work out the smallest rectangle of paper needed to wrap it so that it is completely covered.

Can you mark 4 points on a flat surface so that there are only two different distances between them?

What is the greatest number of squares you can make by overlapping three squares?

ABC is an equilateral triangle and P is a point in the interior of the triangle. We know that AP = 3cm and BP = 4cm. Prove that CP must be less than 10 cm.

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

How will you go about finding all the jigsaw pieces that have one peg and one hole?

A game has a special dice with a colour spot on each face. These three pictures show different views of the same dice. What colour is opposite blue?

A huge wheel is rolling past your window. What do you see?

The whole set of tiles is used to make a square. This has a green and blue border. There are no green or blue tiles anywhere in the square except on this border. How many tiles are there in the set?

Investigate the number of paths you can take from one vertex to another in these 3D shapes. Is it possible to take an odd number and an even number of paths to the same vertex?

ABCD is a regular tetrahedron and the points P, Q, R and S are the midpoints of the edges AB, BD, CD and CA. Prove that PQRS is a square.

Imagine an infinitely large sheet of square dotty paper on which you can draw triangles of any size you wish (providing each vertex is on a dot). What areas is it/is it not possible to draw?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

If you move the tiles around, can you make squares with different coloured edges?

ABCDEFGH is a 3 by 3 by 3 cube. Point P is 1/3 along AB (that is AP : PB = 1 : 2), point Q is 1/3 along GH and point R is 1/3 along ED. What is the area of the triangle PQR?

Four rods, two of length a and two of length b, are linked to form a kite. The linkage is moveable so that the angles change. What is the maximum area of the kite?

Can you cut a regular hexagon into two pieces to make a parallelogram? Try cutting it into three pieces to make a rhombus!

Can you find a way of representing these arrangements of balls?

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

What is the shape of wrapping paper that you would need to completely wrap this model?

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

Exploring and predicting folding, cutting and punching holes and making spirals.

A 3x3x3 cube may be reduced to unit cubes in six saw cuts. If after every cut you can rearrange the pieces before cutting straight through, can you do it in fewer?

Start with a large square, join the midpoints of its sides, you'll see four right angled triangles. Remove these triangles, a second square is left. Repeat the operation. What happens?

These are pictures of the sea defences at New Brighton. Can you work out what a basic shape might be in both images of the sea wall and work out a way they might fit together?