Design an arrangement of display boards in the school hall which fits the requirements of different people.

What is the best way to shunt these carriages so that each train can continue its journey?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Can you fit the tangram pieces into the outline of Granma T?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

For this task, you'll need an A4 sheet and two A5 transparent sheets. Decide on a way of arranging the A5 sheets on top of the A4 sheet and explore ...

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

Can you fit the tangram pieces into the outline of the child walking home from school?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

A game has a special dice with a colour spot on each face. These three pictures show different views of the same dice. What colour is opposite blue?

Can you cut up a square in the way shown and make the pieces into a triangle?

How can you paint the faces of these eight cubes so they can be put together to make a 2 x 2 cube that is green all over AND a 2 x 2 cube that is yellow all over?

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

Here are more buildings to picture in your mind's eye. Watch out - they become quite complicated!

What is the greatest number of squares you can make by overlapping three squares?

Exploring and predicting folding, cutting and punching holes and making spirals.

Can you make a 3x3 cube with these shapes made from small cubes?

Can you fit the tangram pieces into the outline of Little Ming?

Exchange the positions of the two sets of counters in the least possible number of moves

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

Can you fit the tangram pieces into the outline of this telephone?

Can you work out what shape is made by folding in this way? Why not create some patterns using this shape but in different sizes?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

This article for teachers describes how modelling number properties involving multiplication using an array of objects not only allows children to represent their thinking with concrete materials,. . . .

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outline of these rabbits?

A game for 2 players. Given a board of dots in a grid pattern, players take turns drawing a line by connecting 2 adjacent dots. Your goal is to complete more squares than your opponent.

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outline of the rocket?

Can you fit the tangram pieces into the outline of this sports car?

Can you fit the tangram pieces into the outline of these convex shapes?

Can you fit the tangram pieces into the outline of this goat and giraffe?

This article looks at levels of geometric thinking and the types of activities required to develop this thinking.

Here's a simple way to make a Tangram without any measuring or ruling lines.

What happens when you turn these cogs? Investigate the differences between turning two cogs of different sizes and two cogs which are the same.

Can you fit the tangram pieces into the outlines of the candle and sundial?