A game for 1 or 2 people. Use the interactive version, or play with friends. Try to round up as many counters as possible.

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

Exploring and predicting folding, cutting and punching holes and making spirals.

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of the child walking home from school?

Which of these dice are right-handed and which are left-handed?

How can you paint the faces of these eight cubes so they can be put together to make a 2 x 2 cube that is green all over AND a 2 x 2 cube that is yellow all over?

Can you fit the tangram pieces into the outlines of the workmen?

A game for 2 players. Given a board of dots in a grid pattern, players take turns drawing a line by connecting 2 adjacent dots. Your goal is to complete more squares than your opponent.

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

An extension of noughts and crosses in which the grid is enlarged and the length of the winning line can to altered to 3, 4 or 5.

Here are more buildings to picture in your mind's eye. Watch out - they become quite complicated!

Can you fit the tangram pieces into the outline of Mai Ling?

A game has a special dice with a colour spot on each face. These three pictures show different views of the same dice. What colour is opposite blue?

What is the greatest number of squares you can make by overlapping three squares?

Can you fit the tangram pieces into the outline of Granma T?

Can you fit the tangram pieces into the outline of Little Ming?

Can you cut up a square in the way shown and make the pieces into a triangle?

Can you fit the tangram pieces into the silhouette of the junk?

Can you logically construct these silhouettes using the tangram pieces?

An activity centred around observations of dots and how we visualise number arrangement patterns.

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Can you work out what kind of rotation produced this pattern of pegs in our pegboard?

Find a way to cut a 4 by 4 square into only two pieces, then rejoin the two pieces to make an L shape 6 units high.

Can you work out what is wrong with the cogs on a UK 2 pound coin?

Have a look at what happens when you pull a reef knot and a granny knot tight. Which do you think is best for securing things together? Why?

Can you fit the tangram pieces into the outline of these convex shapes?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Imagine a 3 by 3 by 3 cube made of 9 small cubes. Each face of the large cube is painted a different colour. How many small cubes will have two painted faces? Where are they?

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

Can you picture where this letter "F" will be on the grid if you flip it in these different ways?

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of the rocket?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Why do you think that the red player chose that particular dot in this game of Seeing Squares?

Imagine a 4 by 4 by 4 cube. If you and a friend drill holes in some of the small cubes in the ways described, how many will not have holes drilled through them?

Can you use the interactive to complete the tangrams in the shape of butterflies?

What happens when you turn these cogs? Investigate the differences between turning two cogs of different sizes and two cogs which are the same.

Exchange the positions of the two sets of counters in the least possible number of moves