Can you fit the tangram pieces into the outline of Little Ming?

A game for 1 or 2 people. Use the interactive version, or play with friends. Try to round up as many counters as possible.

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

We start with one yellow cube and build around it to make a 3x3x3 cube with red cubes. Then we build around that red cube with blue cubes and so on. How many cubes of each colour have we used?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Can you work out what is wrong with the cogs on a UK 2 pound coin?

Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Exchange the positions of the two sets of counters in the least possible number of moves

Here are more buildings to picture in your mind's eye. Watch out - they become quite complicated!

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

Imagine you are suspending a cube from one vertex (corner) and allowing it to hang freely. Now imagine you are lowering it into water until it is exactly half submerged. What shape does the surface. . . .

How many different triangles can you make on a circular pegboard that has nine pegs?

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

You can move the 4 pieces of the jigsaw and fit them into both outlines. Explain what has happened to the missing one unit of area.

Can you fit the tangram pieces into the outline of Granma T?

Make a flower design using the same shape made out of different sizes of paper.

Can you cut up a square in the way shown and make the pieces into a triangle?

ABC is an equilateral triangle and P is a point in the interior of the triangle. We know that AP = 3cm and BP = 4cm. Prove that CP must be less than 10 cm.

A game has a special dice with a colour spot on each face. These three pictures show different views of the same dice. What colour is opposite blue?

Can you work out what shape is made by folding in this way? Why not create some patterns using this shape but in different sizes?

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?

Can you mark 4 points on a flat surface so that there are only two different distances between them?

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

What is the greatest number of squares you can make by overlapping three squares?

How can you paint the faces of these eight cubes so they can be put together to make a 2 x 2 cube that is green all over AND a 2 x 2 cube that is yellow all over?

These are pictures of the sea defences at New Brighton. Can you work out what a basic shape might be in both images of the sea wall and work out a way they might fit together?

Can you fit the tangram pieces into the outline of the rocket?

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

Mathematics is the study of patterns. Studying pattern is an opportunity to observe, hypothesise, experiment, discover and create.

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outline of these convex shapes?

Lyndon Baker describes how the Mobius strip and Euler's law can introduce pupils to the idea of topology.

What happens when you turn these cogs? Investigate the differences between turning two cogs of different sizes and two cogs which are the same.

Here's a simple way to make a Tangram without any measuring or ruling lines.

This article looks at levels of geometric thinking and the types of activities required to develop this thinking.

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of this sports car?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outline of the telescope and microscope?