Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

Can you fit the tangram pieces into the outline of these convex shapes?

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

Can you fit the tangram pieces into the outline of this junk?

Can you fit the tangram pieces into the outline of the rocket?

Can you fit the tangram pieces into the outline of this sports car?

What happens when you turn these cogs? Investigate the differences between turning two cogs of different sizes and two cogs which are the same.

Here's a simple way to make a Tangram without any measuring or ruling lines.

This article looks at levels of geometric thinking and the types of activities required to develop this thinking.

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of this plaque design?

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

A game has a special dice with a colour spot on each face. These three pictures show different views of the same dice. What colour is opposite blue?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Can you work out what kind of rotation produced this pattern of pegs in our pegboard?

A 3x3x3 cube may be reduced to unit cubes in six saw cuts. If after every cut you can rearrange the pieces before cutting straight through, can you do it in fewer?

A game for 1 person. Can you work out how the dice must be rolled from the start position to the finish? Play on line.

Can you fit the tangram pieces into the outline of Mai Ling?

How can you paint the faces of these eight cubes so they can be put together to make a 2 x 2 cube that is green all over AND a 2 x 2 cube that is yellow all over?

A bus route has a total duration of 40 minutes. Every 10 minutes, two buses set out, one from each end. How many buses will one bus meet on its way from one end to the other end?

What is the greatest number of squares you can make by overlapping three squares?

Can you fit the tangram pieces into the outline of these rabbits?

Here are more buildings to picture in your mind's eye. Watch out - they become quite complicated!

Can you cut up a square in the way shown and make the pieces into a triangle?

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

A game for 2 players. Given a board of dots in a grid pattern, players take turns drawing a line by connecting 2 adjacent dots. Your goal is to complete more squares than your opponent.

Which of these dice are right-handed and which are left-handed?

Exchange the positions of the two sets of counters in the least possible number of moves

Charlie and Alison have been drawing patterns on coordinate grids. Can you picture where the patterns lead?

Lyndon Baker describes how the Mobius strip and Euler's law can introduce pupils to the idea of topology.

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

Imagine you are suspending a cube from one vertex (corner) and allowing it to hang freely. Now imagine you are lowering it into water until it is exactly half submerged. What shape does the surface. . . .

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.