Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

What is the best way to shunt these carriages so that each train can continue its journey?

How will you go about finding all the jigsaw pieces that have one peg and one hole?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you visualise what shape this piece of paper will make when it is folded?

For this task, you'll need an A4 sheet and two A5 transparent sheets. Decide on a way of arranging the A5 sheets on top of the A4 sheet and explore ...

Can you fit the tangram pieces into the outline of Little Ming?

Can you fit the tangram pieces into the outline of Granma T?

Can you work out what shape is made by folding in this way? Why not create some patterns using this shape but in different sizes?

Can you make a 3x3 cube with these shapes made from small cubes?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you fit the tangram pieces into the outline of these convex shapes?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of the rocket?

Can you fit the tangram pieces into the outline of these rabbits?

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

Can you cut up a square in the way shown and make the pieces into a triangle?

Can you fit the tangram pieces into the outline of this sports car?

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Here's a simple way to make a Tangram without any measuring or ruling lines.

Can you fit the tangram pieces into the outline of Mai Ling?

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

Can you fit the tangram pieces into the outline of this goat and giraffe?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

What are the next three numbers in this sequence? Can you explain why are they called pyramid numbers?

Can you fit the tangram pieces into the outlines of these people?

Can you use the interactive to complete the tangrams in the shape of butterflies?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

One face of a regular tetrahedron is painted blue and each of the remaining faces are painted using one of the colours red, green or yellow. How many different possibilities are there?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Investigate the number of paths you can take from one vertex to another in these 3D shapes. Is it possible to take an odd number and an even number of paths to the same vertex?

Have a look at what happens when you pull a reef knot and a granny knot tight. Which do you think is best for securing things together? Why?