This is the first article in a series which aim to provide some insight into the way spatial thinking develops in children, and draw on a range of reported research. The focus of this article is the. . . .

What can you see? What do you notice? What questions can you ask?

This article is based on some of the ideas that emerged during the production of a book which takes visualising as its focus. We began to identify problems which helped us to take a structured view. . . .

A game for 2 people. Take turns joining two dots, until your opponent is unable to move.

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

Can you fit the tangram pieces into the outlines of the workmen?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

This article for teachers discusses examples of problems in which there is no obvious method but in which children can be encouraged to think deeply about the context and extend their ability to. . . .

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outlines of the candle and sundial?

If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?

Lyndon Baker describes how the Mobius strip and Euler's law can introduce pupils to the idea of topology.

Here's a simple way to make a Tangram without any measuring or ruling lines.

Can you fit the tangram pieces into the outline of this junk?

Can you fit the tangram pieces into the outline of the rocket?

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outline of these convex shapes?

Can you fit the tangram pieces into the outline of this sports car?

This article looks at levels of geometric thinking and the types of activities required to develop this thinking.

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.

We start with one yellow cube and build around it to make a 3x3x3 cube with red cubes. Then we build around that red cube with blue cubes and so on. How many cubes of each colour have we used?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outlines of the chairs?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

Use the three triangles to fill these outline shapes. Perhaps you can create some of your own shapes for a friend to fill?

Which of the following cubes can be made from these nets?

The image in this problem is part of a piece of equipment found in the playground of a school. How would you describe it to someone over the phone?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Mathematics is the study of patterns. Studying pattern is an opportunity to observe, hypothesise, experiment, discover and create.

Can you fit the tangram pieces into the outline of these rabbits?

Take it in turns to place a domino on the grid. One to be placed horizontally and the other vertically. Can you make it impossible for your opponent to play?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

What is the total area of the four outside triangles which are outlined in red in this arrangement of squares inside each other?

Find your way through the grid starting at 2 and following these operations. What number do you end on?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?

Can you visualise whether these nets fold up into 3D shapes? Watch the videos each time to see if you were correct.

What shape has Harry drawn on this clock face? Can you find its area? What is the largest number of square tiles that could cover this area?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?