Make one big triangle so the numbers that touch on the small triangles add to 10. You could use the interactivity to help you.

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

Imagine a pyramid which is built in square layers of small cubes. If we number the cubes from the top, starting with 1, can you picture which cubes are directly below this first cube?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Can you find ways of joining cubes together so that 28 faces are visible?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

Find your way through the grid starting at 2 and following these operations. What number do you end on?

This article for teachers describes how modelling number properties involving multiplication using an array of objects not only allows children to represent their thinking with concrete materials,. . . .

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

What is the best way to shunt these carriages so that each train can continue its journey?

Use the three triangles to fill these outline shapes. Perhaps you can create some of your own shapes for a friend to fill?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

What happens when you try and fit the triomino pieces into these two grids?

Move just three of the circles so that the triangle faces in the opposite direction.

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?

This article introduces the idea of generic proof for younger children and illustrates how one example can offer a proof of a general result through unpacking its underlying structure.

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Investigate the number of paths you can take from one vertex to another in these 3D shapes. Is it possible to take an odd number and an even number of paths to the same vertex?

What does the overlap of these two shapes look like? Try picturing it in your head and then use the interactivity to test your prediction.

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

If you can post the triangle with either the blue or yellow colour face up, how many ways can it be posted altogether?

This article for teachers describes a project which explores thepower of storytelling to convey concepts and ideas to children.

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

Exchange the positions of the two sets of counters in the least possible number of moves

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

How many different triangles can you make on a circular pegboard that has nine pegs?

Can you make a 3x3 cube with these shapes made from small cubes?

Think of a number, square it and subtract your starting number. Is the number youâ€™re left with odd or even? How do the images help to explain this?

Can you predict when you'll be clapping and when you'll be clicking if you start this rhythm? How about when a friend begins a new rhythm at the same time?

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

Can you split each of the shapes below in half so that the two parts are exactly the same?

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

What is the least number of moves you can take to rearrange the bears so that no bear is next to a bear of the same colour?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?