This challenge involves eight three-cube models made from interlocking cubes. Investigate different ways of putting the models together then compare your constructions.

Can you fit the tangram pieces into the outline of this telephone?

Here are more buildings to picture in your mind's eye. Watch out - they become quite complicated!

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of this plaque design?

Can you logically construct these silhouettes using the tangram pieces?

Can you fit the tangram pieces into the outline of these convex shapes?

Can you fit the tangram pieces into the outline of this sports car?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Can you fit the tangram pieces into the outline of Mai Ling?

Can you cut up a square in the way shown and make the pieces into a triangle?

How can you paint the faces of these eight cubes so they can be put together to make a 2 x 2 x 2 cube that is green all over AND a 2 x 2 x 2 cube that is yellow all over?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Make a cube out of straws and have a go at this practical challenge.

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of the rocket?

I've made some cubes and some cubes with holes in. This challenge invites you to explore the difference in the number of small cubes I've used. Can you see any patterns?

Can you use the interactive to complete the tangrams in the shape of butterflies?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

Exploring and predicting folding, cutting and punching holes and making spirals.

For this task, you'll need an A4 sheet and two A5 transparent sheets. Decide on a way of arranging the A5 sheets on top of the A4 sheet and explore ...

What are the next three numbers in this sequence? Can you explain why are they called pyramid numbers?

Can you fit the tangram pieces into the outline of Granma T?

Can you visualise what shape this piece of paper will make when it is folded?

Can you fit the tangram pieces into the outline of Little Ming?

Have a look at what happens when you pull a reef knot and a granny knot tight. Which do you think is best for securing things together? Why?

Make a flower design using the same shape made out of different sizes of paper.

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?

Can you work out what shape is made by folding in this way? Why not create some patterns using this shape but in different sizes?

Think of a number, square it and subtract your starting number. Is the number youâ€™re left with odd or even? How do the images help to explain this?

Investigate the number of paths you can take from one vertex to another in these 3D shapes. Is it possible to take an odd number and an even number of paths to the same vertex?

What shape has Harry drawn on this clock face? Can you find its area? What is the largest number of square tiles that could cover this area?

Can you find ways of joining cubes together so that 28 faces are visible?