This article looks at levels of geometric thinking and the types of activities required to develop this thinking.

This is the first article in a series which aim to provide some insight into the way spatial thinking develops in children, and draw on a range of reported research. The focus of this article is the. . . .

What can you see? What do you notice? What questions can you ask?

This article is based on some of the ideas that emerged during the production of a book which takes visualising as its focus. We began to identify problems which helped us to take a structured view. . . .

A cheap and simple toy with lots of mathematics. Can you interpret the images that are produced? Can you predict the pattern that will be produced using different wheels?

Choose a box and work out the smallest rectangle of paper needed to wrap it so that it is completely covered.

We're excited about this new program for drawing beautiful mathematical designs. Can you work out how we made our first few pictures and, even better, share your most elegant solutions with us?

What is the total area of the four outside triangles which are outlined in red in this arrangement of squares inside each other?

What shape has Harry drawn on this clock face? Can you find its area? What is the largest number of square tiles that could cover this area?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

Take it in turns to place a domino on the grid. One to be placed horizontally and the other vertically. Can you make it impossible for your opponent to play?

A game for 2 people. Take turns joining two dots, until your opponent is unable to move.

This second article in the series refers to research about levels of development of spatial thinking and the possible influence of instruction.

I found these clocks in the Arts Centre at the University of Warwick intriguing - do they really need four clocks and what times would be ambiguous with only two or three of them?

Can you fit the tangram pieces into the outline of this goat and giraffe?

These points all mark the vertices (corners) of ten hidden squares. Can you find the 10 hidden squares?

Billy's class had a robot called Fred who could draw with chalk held underneath him. What shapes did the pupils make Fred draw?

Can you fit the tangram pieces into the outline of this sports car?

If you can post the triangle with either the blue or yellow colour face up, how many ways can it be posted altogether?

Can you fit the tangram pieces into the outline of the rocket?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of this junk?

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outline of these convex shapes?

Lyndon Baker describes how the Mobius strip and Euler's law can introduce pupils to the idea of topology.

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

Here are shadows of some 3D shapes. What shapes could have made them?

Which of these dice are right-handed and which are left-handed?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.

A shape and space game for 2,3 or 4 players. Be the last person to be able to place a pentomino piece on the playing board. Play with card, or on the computer.

Each of the nets of nine solid shapes has been cut into two pieces. Can you see which pieces go together?

Can you arrange the shapes in a chain so that each one shares a face (or faces) that are the same shape as the one that follows it?

Can you cut a regular hexagon into two pieces to make a parallelogram? Try cutting it into three pieces to make a rhombus!

Use the three triangles to fill these outline shapes. Perhaps you can create some of your own shapes for a friend to fill?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outlines of the candle and sundial?

A hundred square has been printed on both sides of a piece of paper. What is on the back of 100? 58? 23? 19?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

This article for teachers describes how modelling number properties involving multiplication using an array of objects not only allows children to represent their thinking with concrete materials,. . . .

Here's a simple way to make a Tangram without any measuring or ruling lines.

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outlines of the workmen?

A game for 2 players. Given a board of dots in a grid pattern, players take turns drawing a line by connecting 2 adjacent dots. Your goal is to complete more squares than your opponent.