This article is based on some of the ideas that emerged during the production of a book which takes visualising as its focus. We began to identify problems which helped us to take a structured view. . . .

This is the first article in a series which aim to provide some insight into the way spatial thinking develops in children, and draw on a range of reported research. The focus of this article is the. . . .

Make a flower design using the same shape made out of different sizes of paper.

Can you fit the tangram pieces into the outline of Little Ming?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of Granma T?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

An extension of noughts and crosses in which the grid is enlarged and the length of the winning line can to altered to 3, 4 or 5.

Can you work out what is wrong with the cogs on a UK 2 pound coin?

Imagine a 3 by 3 by 3 cube. If you and a friend drill holes in some of the small cubes in the ways described, how many will have holes drilled through them?

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?

Can you fit the tangram pieces into the outline of the child walking home from school?

Make a cube out of straws and have a go at this practical challenge.

Can you work out what shape is made by folding in this way? Why not create some patterns using this shape but in different sizes?

Can you fit the tangram pieces into the outlines of these clocks?

Exchange the positions of the two sets of counters in the least possible number of moves

These are pictures of the sea defences at New Brighton. Can you work out what a basic shape might be in both images of the sea wall and work out a way they might fit together?

I found these clocks in the Arts Centre at the University of Warwick intriguing - do they really need four clocks and what times would be ambiguous with only two or three of them?

How many different triangles can you make on a circular pegboard that has nine pegs?

Can you fit the tangram pieces into the outline of these rabbits?

For this task, you'll need an A4 sheet and two A5 transparent sheets. Decide on a way of arranging the A5 sheets on top of the A4 sheet and explore ...

Start with a large square, join the midpoints of its sides, you'll see four right angled triangles. Remove these triangles, a second square is left. Repeat the operation. What happens?

This second article in the series refers to research about levels of development of spatial thinking and the possible influence of instruction.

Can you fit the tangram pieces into the outlines of these people?

Use the three triangles to fill these outline shapes. Perhaps you can create some of your own shapes for a friend to fill?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you visualise what shape this piece of paper will make when it is folded?

A shape and space game for 2,3 or 4 players. Be the last person to be able to place a pentomino piece on the playing board. Play with card, or on the computer.

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of this sports car?

This article looks at levels of geometric thinking and the types of activities required to develop this thinking.

What happens when you turn these cogs? Investigate the differences between turning two cogs of different sizes and two cogs which are the same.

Lyndon Baker describes how the Mobius strip and Euler's law can introduce pupils to the idea of topology.

Here's a simple way to make a Tangram without any measuring or ruling lines.

Take it in turns to place a domino on the grid. One to be placed horizontally and the other vertically. Can you make it impossible for your opponent to play?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outline of the rocket?

Can you fit the tangram pieces into the outline of this junk?

If you can post the triangle with either the blue or yellow colour face up, how many ways can it be posted altogether?

Can you fit the tangram pieces into the outline of these convex shapes?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?