Can you fit the tangram pieces into the outline of Little Ming?

We start with one yellow cube and build around it to make a 3x3x3 cube with red cubes. Then we build around that red cube with blue cubes and so on. How many cubes of each colour have we used?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

An activity centred around observations of dots and how we visualise number arrangement patterns.

A game for 1 or 2 people. Use the interactive version, or play with friends. Try to round up as many counters as possible.

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Use the three triangles to fill these outline shapes. Perhaps you can create some of your own shapes for a friend to fill?

Which of these dice are right-handed and which are left-handed?

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

This article for teachers discusses examples of problems in which there is no obvious method but in which children can be encouraged to think deeply about the context and extend their ability to. . . .

If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?

An extension of noughts and crosses in which the grid is enlarged and the length of the winning line can to altered to 3, 4 or 5.

A game for 2 players. Given a board of dots in a grid pattern, players take turns drawing a line by connecting 2 adjacent dots. Your goal is to complete more squares than your opponent.

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Mathematics is the study of patterns. Studying pattern is an opportunity to observe, hypothesise, experiment, discover and create.

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of this telephone?

Start with a large square, join the midpoints of its sides, you'll see four right angled triangles. Remove these triangles, a second square is left. Repeat the operation. What happens?

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

These are pictures of the sea defences at New Brighton. Can you work out what a basic shape might be in both images of the sea wall and work out a way they might fit together?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outlines of these clocks?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

What happens when you turn these cogs? Investigate the differences between turning two cogs of different sizes and two cogs which are the same.

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

Make one big triangle so the numbers that touch on the small triangles add to 10. You could use the interactivity to help you.

I found these clocks in the Arts Centre at the University of Warwick intriguing - do they really need four clocks and what times would be ambiguous with only two or three of them?

Can you visualise what shape this piece of paper will make when it is folded?

Make a flower design using the same shape made out of different sizes of paper.

Can you fit the tangram pieces into the outline of Granma T?

Exploring and predicting folding, cutting and punching holes and making spirals.

Seeing Squares game for an adult and child. Can you come up with a way of always winning this game?

Why do you think that the red player chose that particular dot in this game of Seeing Squares?

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?