Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Find your way through the grid starting at 2 and following these operations. What number do you end on?

A game for 2 people. Take turns joining two dots, until your opponent is unable to move.

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

I found these clocks in the Arts Centre at the University of Warwick intriguing - do they really need four clocks and what times would be ambiguous with only two or three of them?

Use the three triangles to fill these outline shapes. Perhaps you can create some of your own shapes for a friend to fill?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Make one big triangle so the numbers that touch on the small triangles add to 10.

What is the best way to shunt these carriages so that each train can continue its journey?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

How can you arrange these 10 matches in four piles so that when you move one match from three of the piles into the fourth, you end up with the same arrangement?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Investigate the number of paths you can take from one vertex to another in these 3D shapes. Is it possible to take an odd number and an even number of paths to the same vertex?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

What can you see? What do you notice? What questions can you ask?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

How will you go about finding all the jigsaw pieces that have one peg and one hole?

On which of these shapes can you trace a path along all of its edges, without going over any edge twice?

What happens when you try and fit the triomino pieces into these two grids?

Can you make a 3x3 cube with these shapes made from small cubes?

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

Place the numbers 1, 2, 3,..., 9 one on each square of a 3 by 3 grid so that all the rows and columns add up to a prime number. How many different solutions can you find?

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

Hover your mouse over the counters to see which ones will be removed. Click to remove them. The winner is the last one to remove a counter. How you can make sure you win?

One face of a regular tetrahedron is painted blue and each of the remaining faces are painted using one of the colours red, green or yellow. How many different possibilities are there?

How many pieces of string have been used in these patterns? Can you describe how you know?

How many loops of string have been used to make these patterns?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

What is the least number of moves you can take to rearrange the bears so that no bear is next to a bear of the same colour?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

In this town, houses are built with one room for each person. There are some families of seven people living in the town. In how many different ways can they build their houses?

A toy has a regular tetrahedron, a cube and a base with triangular and square hollows. If you fit a shape into the correct hollow a bell rings. How many times does the bell ring in a complete game?

When I fold a 0-20 number line, I end up with 'stacks' of numbers on top of each other. These challenges involve varying the length of the number line and investigating the 'stack totals'.

This article for teachers discusses examples of problems in which there is no obvious method but in which children can be encouraged to think deeply about the context and extend their ability to. . . .

How many different triangles can you make on a circular pegboard that has nine pegs?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

This article is based on some of the ideas that emerged during the production of a book which takes visualising as its focus. We began to identify problems which helped us to take a structured view. . . .

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?