Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Make one big triangle so the numbers that touch on the small triangles add to 10. You could use the interactivity to help you.

Find your way through the grid starting at 2 and following these operations. What number do you end on?

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Move just three of the circles so that the triangle faces in the opposite direction.

Imagine a pyramid which is built in square layers of small cubes. If we number the cubes from the top, starting with 1, can you picture which cubes are directly below this first cube?

What happens when you try and fit the triomino pieces into these two grids?

Use the three triangles to fill these outline shapes. Perhaps you can create some of your own shapes for a friend to fill?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

What is the best way to shunt these carriages so that each train can continue its journey?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

This article for teachers describes how modelling number properties involving multiplication using an array of objects not only allows children to represent their thinking with concrete materials,. . . .

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

Can you make a 3x3 cube with these shapes made from small cubes?

If you can post the triangle with either the blue or yellow colour face up, how many ways can it be posted altogether?

Take it in turns to place a domino on the grid. One to be placed horizontally and the other vertically. Can you make it impossible for your opponent to play?

Exchange the positions of the two sets of counters in the least possible number of moves

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

How many different triangles can you make on a circular pegboard that has nine pegs?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

We start with one yellow cube and build around it to make a 3x3x3 cube with red cubes. Then we build around that red cube with blue cubes and so on. How many cubes of each colour have we used?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Here are shadows of some 3D shapes. What shapes could have made them?

Which of these dice are right-handed and which are left-handed?

A shape and space game for 2,3 or 4 players. Be the last person to be able to place a pentomino piece on the playing board. Play with card, or on the computer.

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Can you fit the tangram pieces into the outline of these convex shapes?

A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.

A game for 2 players. Given a board of dots in a grid pattern, players take turns drawing a line by connecting 2 adjacent dots. Your goal is to complete more squares than your opponent.