Eight children each had a cube made from modelling clay. They cut them into four pieces which were all exactly the same shape and size. Whose pieces are the same? Can you decide who made each set?

This challenge involves eight three-cube models made from interlocking cubes. Investigate different ways of putting the models together then compare your constructions.

Can you describe a piece of paper clearly enough for your partner to know which piece it is?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

How many balls of modelling clay and how many straws does it take to make these skeleton shapes?

Here are shadows of some 3D shapes. What shapes could have made them?

If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?

Have a go at making a few of these shapes from paper in different sizes. What patterns can you create?

Imagine a 3 by 3 by 3 cube. If you and a friend drill holes in some of the small cubes in the ways described, how many will have holes drilled through them?

Can you work out what shape is made when this piece of paper is folded up using the crease pattern shown?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

Use the three triangles to fill these outline shapes. Perhaps you can create some of your own shapes for a friend to fill?

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outlines of the candle and sundial?

How many different triangles can you make on a circular pegboard that has nine pegs?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of Little Fung at the table?

A hundred square has been printed on both sides of a piece of paper. What is on the back of 100? 58? 23? 19?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of the child walking home from school?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of this junk?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Find your way through the grid starting at 2 and following these operations. What number do you end on?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

Can you find ways of joining cubes together so that 28 faces are visible?

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

Design an arrangement of display boards in the school hall which fits the requirements of different people.

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

Can you visualise what shape this piece of paper will make when it is folded?

Can you fit the tangram pieces into the outline of Granma T?

Can you make a 3x3 cube with these shapes made from small cubes?