Design an arrangement of display boards in the school hall which fits the requirements of different people.

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

What is the best way to shunt these carriages so that each train can continue its journey?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Find your way through the grid starting at 2 and following these operations. What number do you end on?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

What happens when you try and fit the triomino pieces into these two grids?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

Use the three triangles to fill these outline shapes. Perhaps you can create some of your own shapes for a friend to fill?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

A toy has a regular tetrahedron, a cube and a base with triangular and square hollows. If you fit a shape into the correct hollow a bell rings. How many times does the bell ring in a complete game?

Can you find ways of joining cubes together so that 28 faces are visible?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

One face of a regular tetrahedron is painted blue and each of the remaining faces are painted using one of the colours red, green or yellow. How many different possibilities are there?

This challenge involves eight three-cube models made from interlocking cubes. Investigate different ways of putting the models together then compare your constructions.

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

Investigate the number of paths you can take from one vertex to another in these 3D shapes. Is it possible to take an odd number and an even number of paths to the same vertex?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

What shape is made when you fold using this crease pattern? Can you make a ring design?

Can you fit the tangram pieces into the outline of this sports car?

Can you work out what shape is made by folding in this way? Why not create some patterns using this shape but in different sizes?

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?

Make a cube out of straws and have a go at this practical challenge.

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outline of Granma T?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outlines of these clocks?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

If you can post the triangle with either the blue or yellow colour face up, how many ways can it be posted altogether?

Make a flower design using the same shape made out of different sizes of paper.