Move just three of the circles so that the triangle faces in the opposite direction.

Make one big triangle so the numbers that touch on the small triangles add to 10. You could use the interactivity to help you.

An activity centred around observations of dots and how we visualise number arrangement patterns.

Take it in turns to place a domino on the grid. One to be placed horizontally and the other vertically. Can you make it impossible for your opponent to play?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

What does the overlap of these two shapes look like? Try picturing it in your head and then use the interactivity to test your prediction.

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Eight children each had a cube made from modelling clay. They cut them into four pieces which were all exactly the same shape and size. Whose pieces are the same? Can you decide who made each set?

How many different triangles can you make on a circular pegboard that has nine pegs?

Exchange the positions of the two sets of counters in the least possible number of moves

This article for teachers describes how modelling number properties involving multiplication using an array of objects not only allows children to represent their thinking with concrete materials,. . . .

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

What happens when you try and fit the triomino pieces into these two grids?

If you can post the triangle with either the blue or yellow colour face up, how many ways can it be posted altogether?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

Imagine a pyramid which is built in square layers of small cubes. If we number the cubes from the top, starting with 1, can you picture which cubes are directly below this first cube?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

Can you describe a piece of paper clearly enough for your partner to know which piece it is?

Find your way through the grid starting at 2 and following these operations. What number do you end on?

Square It game for an adult and child. Can you come up with a way of always winning this game?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

What is the shape of wrapping paper that you would need to completely wrap this model?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

Can you find a way of representing these arrangements of balls?

Lyndon Baker describes how the Mobius strip and Euler's law can introduce pupils to the idea of topology.

This article looks at levels of geometric thinking and the types of activities required to develop this thinking.

What happens when you turn these cogs? Investigate the differences between turning two cogs of different sizes and two cogs which are the same.

A hundred square has been printed on both sides of a piece of paper. What is on the back of 100? 58? 23? 19?

Here's a simple way to make a Tangram without any measuring or ruling lines.

Create a pattern on the left-hand grid. How could you extend your pattern on the right-hand grid?

Can you fit the tangram pieces into the outlines of the workmen?

A shape and space game for 2,3 or 4 players. Be the last person to be able to place a pentomino piece on the playing board. Play with card, or on the computer.

A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.

Use the three triangles to fill these outline shapes. Perhaps you can create some of your own shapes for a friend to fill?

An extension of noughts and crosses in which the grid is enlarged and the length of the winning line can to altered to 3, 4 or 5.

Investigate the number of paths you can take from one vertex to another in these 3D shapes. Is it possible to take an odd number and an even number of paths to the same vertex?

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

Here are shadows of some 3D shapes. What shapes could have made them?

Which of these dice are right-handed and which are left-handed?

If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?